Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy ; 2022.
Article in English | EuropePMC | ID: covidwho-1887898

ABSTRACT

Introduction The vaccine against SARS-CoV-2 provides humoral immunity to fight COVID-19;however, the acquired immunity gradually declines. Booster vaccination restores reduced humoral immunity;however, its effect on newly emerging variants, such as the Omicron variant, is a concern. As the waves of COVID-19 cases and vaccine programs differ between countries, it is necessary to know the domestic effect of the booster. Methods Serum samples were obtained from healthcare workers (20–69 years old) in the Pfizer BNT162b2 vaccine program at the Toyama University Hospital 6 months after the second dose (6mA2D, n = 648) and 2 weeks after the third dose (2wA3D, n = 565). The anti-SARS-CoV-2 antibody level was measured, and neutralization against the wild-type and variants (Delta and Omicron) was evaluated using pseudotyped viruses. Data on booster-related events were collected using questionnaires. Results The median anti-SARS-CoV-2 antibody was >30.9-fold elevated after the booster (6mA2D, 710.0 U/mL [interquartile range (IQR): 443.0–1068.0 U/mL];2wA3D, 21927 U/mL [IQR: 15321.0–>25000.0 U/mL]). Median neutralizing activity using 100-fold sera against wild-type-, Delta-, and Omicron-derived variants was elevated from 84.6%, 36.2%, and 31.2% at 6mA2D to >99.9%, 99.1%, and 94.6% at 2wA3D, respectively. The anti-SARS-CoV-2 antibody levels were significantly elevated in individuals with fever ≥37.5 °C, general fatigue, and myalgia, local swelling, and local hardness. Conclusion The booster effect, especially against the Omicron variant, was observed in the Japanese population. These findings contribute to the precise understanding of the efficacy and side effects of the booster and the promotion of vaccine campaigns.

2.
J Infect Chemother ; 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1885915

ABSTRACT

INTRODUCTION: The vaccine against SARS-CoV-2 provides humoral immunity to fight COVID-19; however, the acquired immunity gradually declines. Booster vaccination restores reduced humoral immunity; however, its effect on newly emerging variants, such as the Omicron variant, is a concern. As the waves of COVID-19 cases and vaccine programs differ between countries, it is necessary to know the domestic effect of the booster. METHODS: Serum samples were obtained from healthcare workers (20-69 years old) in the Pfizer BNT162b2 vaccine program at the Toyama University Hospital 6 months after the second dose (6mA2D, n = 648) and 2 weeks after the third dose (2wA3D, n = 565). The anti-SARS-CoV-2 antibody level was measured, and neutralization against the wild-type and variants (Delta and Omicron) was evaluated using pseudotyped viruses. Data on booster-related events were collected using questionnaires. RESULTS: The median anti-SARS-CoV-2 antibody was >30.9-fold elevated after the booster (6mA2D, 710.0 U/mL [interquartile range (IQR): 443.0-1068.0 U/mL]; 2wA3D, 21927 U/mL [IQR: 15321.0->25000.0 U/mL]). Median neutralizing activity using 100-fold sera against wild-type-, Delta-, and Omicron-derived variants was elevated from 84.6%, 36.2%, and 31.2% at 6mA2D to >99.9%, 99.1%, and 94.6% at 2wA3D, respectively. The anti-SARS-CoV-2 antibody levels were significantly elevated in individuals with fever ≥37.5 °C, general fatigue, and myalgia, local swelling, and local hardness. CONCLUSION: The booster effect, especially against the Omicron variant, was observed in the Japanese population. These findings contribute to the precise understanding of the efficacy and side effects of the booster and the promotion of vaccine campaigns.

3.
MAbs ; 14(1): 2072455, 2022.
Article in English | MEDLINE | ID: covidwho-1839974

ABSTRACT

Many potent neutralizing SARS-CoV-2 antibodies have been developed and used for therapies. However, the effectiveness of many antibodies has been reduced against recently emerging SARS-CoV-2 variants, especially the Omicron variant. We identified a highly potent SARS-CoV-2 neutralizing antibody, UT28K, in COVID-19 convalescent individuals who recovered from a severe condition. UT28K showed efficacy in neutralizing SARS-CoV-2 in an in vitro assay and in vivo prophylactic treatment, and the reactivity to the Omicron strain was reduced. The structural analyses revealed that antibody UT28K Fab and SARS-CoV-2 RBD protein interactions were mainly chain-dominated antigen-antibody interactions. In addition, a mutation analysis suggested that the emergence of a UT28K neutralization-resistant SARS-CoV-2 variant was unlikely, as this variant would likely lose its competitive advantage over circulating SARS-CoV-2. Our data suggest that UT28K offers potent protection against SARS-CoV-2, including newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-334295

ABSTRACT

Backgrounds: This study analysed secondary attack rates (SARs), comparing alpha variants, delta variants and non-variants of concern (non-VOCs), using clinical and close-contact tracing data.MethodsWe analysed coronavirus disease 2019 (COVID-19) case data from a database and contact tracing data between July and October 2020 (Cohort 1) and April 2021 (Cohort 2) and between July and August 2021 (Cohort 3) in a city in Toyama prefecture, Japan. Real-time polymerase chain reaction (PCR) was used to detect the N501Y (alpha variant) and L452R (delta variant) mutations. We calculated the SARs considering close contact, index case and contact setting characteristics. Relative risks (RRs) of secondary attack were analysed using Poisson regression models.ResultsAmong 123 index cases and 530 close contacts in Cohort 1, 246 index cases and 988 close contacts in Cohort 2, and 304 index cases and 984 close contacts in Cohort 3, the SARs associated with alpha and delta variant index cases were 1.47 times and 1.89 times higher than those associated with non-VOC index cases. Delta variant index cases were associated with the highest SAR (29.2%) in the same household and a 2.40-fold (95% CI: 1.62-3.56) higher risk of transmission than non-VOC index cases. The age and symptoms of index cases were associated with the SAR.ConclusionsWe confirmed that VOC index cases were associated with increased transmissibility. Population longitudinal surveillance data linked with contact-tracing data provide valuable information for elucidation of the characteristics of newly emerging variants.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329205

ABSTRACT

Introduction The vaccine against SARS-CoV-2 provides humoral immunity to fight COVID-19;however, the acquired immunity gradually declines. Booster vaccination restores reduced humoral immunity;however, its effect on newly emerging variants, such as the Omicron variant, is a concern. As the waves of COVID-19 cases and vaccine programs differ between countries, it is necessary to know the domestic effect of the booster. Methods Serum samples were obtained from healthcare workers (20-69 years old) in the Pfizer BNT162b2 vaccine program at the Toyama University Hospital 6 months after the second dose (6mA2D, n = 648) and 2 weeks after the third dose (2wA3D, n = 565). The anti-SARS-CoV-2 antibody level was measured, and neutralization against the wild-type and variants (Delta and Omicron) was evaluated using pseudotyped viruses. Data on booster-related events were collected using questionnaires. Results The median anti-SARS-CoV-2 antibody was >30.9-fold elevated after the booster (6mA2D, 710.0 U/mL [interquartile range (IQR): 443.0–1068.0 U/mL];2wA3D, 21927 U/mL [IQR: 15321.0–>25000.0 U/mL]). Median neutralizing activity using 100-fold sera against wild-type-, Delta-, and Omicron-derived variants was elevated from 84.6%, 36.2%, and 31.2% at 6mA2D to >99.9%, 99.1%, and 94.6% at 2wA3D, respectively. The anti-SARS-CoV-2 antibody levels were significantly elevated in individuals with fever ≥37.5 °C, general fatigue, and myalgia, local swelling, and local hardness. Conclusion The booster effect, especially against the Omicron variant, was observed in the Japanese population. These findings contribute to the precise understanding of the efficacy and side effects of the booster and the promotion of vaccine campaigns.

6.
Microbiol Spectr ; 9(3): e0056121, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546468

ABSTRACT

Vaccines against severe acute respiratory syndrome coronavirus-2 have been introduced. To investigate the relationship between vaccine-induced humoral immunity and patient age, we measured antibody levels and neutralization in vaccinated sera. Sera from 13 to 17 days after the second dose of the BNT162b2 vaccine were collected from health care workers at the University of Toyama (n = 740). Antibody levels were measured by the anti-receptor binding domain antibody test (anti-RBD test), and neutralization against wild-type (WT), α- and ß-variant pseudotyped viruses were assayed using a high-throughput chemiluminescent reduction neutralizing test (htCRNT; positivity cutoff, 50% neutralization at serum dilution 1:100). Basic clinical characteristics were obtained from questionnaires. Antibodies were confirmed in all participants in both the anti-RBD test (median, 2,112 U/ml; interquartile range [IQR], 1,275 to 3,390 U/ml) and the htCRNT against WT (median % inhibition, >99.9; IQR, >99.9 to >99.9). For randomly selected sera (n = 61), 100.0% had positive htCRNT values against the α- and ß-derived variants. Among those who answered the questionnaire (n = 237), the values of the anti-RBD test were negatively correlated with age in females (P < 0.01). An age-dependent decline in neutralization was observed against the variants but not against the wild-type virus (wild type, P = 0.09; α, P < 0.01; ß, P < 0.01). The neutralizing activity induced by BNT162b2 was obtained not only against the wild-type virus, but also against the variants; however, there was an age-dependent decrease in the latter. Age-related heterogeneity of vaccine-acquired immunity is a concern in preventive strategies in the era dominated by variants. IMPORTANCE Since mRNA vaccines utilize wild-type SARS-CoV-2 spike protein as an antigen, there are potential concerns about acquiring immunity to variants of this virus. The neutralizing activity in BNT162b2-vaccinated individuals was higher against the wild-type virus than against its variants; this effect was more apparent in older age groups. This finding suggests that one of the weaknesses of the mRNA vaccine is the high risk of variant infection in the elderly population. Because the elderly are at a higher risk of SARS-CoV-2 infection, the age-dependent decline of neutralization against viral variants should be considered while planning vaccination programs that include boosters.


Subject(s)
/immunology , COVID-19/immunology , Immunity , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/prevention & control , Cross Reactions , Female , Humans , Immunity, Humoral , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus , Vaccination , Young Adult , /immunology
7.
Microbiol Spectr ; 9(3): e0056021, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546467

ABSTRACT

Serological tests are beneficial for recognizing the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To identify protective immunity, optimization of the chemiluminescent reduction neutralizing test (CRNT) is critical. Whether commercial antibody tests have comparable accuracy is unknown. Serum samples were obtained from COVID-19 patients (n = 74), SARS-CoV-2 PCR-negative (n = 179), and suspected healthy individuals (n = 229) before SARS-CoV-2 variants had been detected locally. The convalescent phase was defined as the period after day 10 from disease onset or the episode of close contact. The CRNT using pseudotyped viruses displaying the wild-type (WT) spike protein and a commercial anti-receptor-binding domain (RBD) antibody test were assayed. Serology for the B.1.1.7 and B.1.351 variants was also assayed. Both tests concurred for symptomatic COVID-19 patients in the convalescent phase. They clearly differentiated between patients and suspected healthy individuals (sensitivity: 95.8% and 100%, respectively; specificity: 99.1% and 100%, respectively). Anti-RBD antibody test results correlated with neutralizing titers (r = 0.31, 95% confidence interval [CI] 0.22-0.38). Compared with the WT, lower CRNT values were observed for the variants. Of the samples with ≥100 U/mL by the anti-RBD antibody test, 77.8% and 88.9% showed ≥50% neutralization against the B.1.1.7 and the B.1.351 variants, respectively. Exceeding 100 U/mL in the anti-RBD antibody test was associated with neutralization of variants (P < 0.01). The CRNT and commercial anti-RBD antibody test effectively classified convalescent COVID-19 patients. Strong positive results with the anti-RBD antibody test can reflect neutralizing activity against emerging variants. IMPORTANCE This study provides a diagnostic evidence of test validity, which can lead to vaccine efficacy and proof of recovery after COVID-19. It is not easy to know neutralization against SARS-CoV-2 in the clinical laboratory because of technical and biohazard issues. The correlation of the quantitative anti-receptor-binding domain antibody test, which is widely available, with neutralizing test indicates that we can know indirectly the state of acquisition of functional immunity against wild and variant-type viruses in the clinical laboratory.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Neutralization Tests/methods , Protein Binding/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/classification , Young Adult
8.
J Infect Chemother ; 28(2): 347-351, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1510011

ABSTRACT

Genetic testing using reverse transcriptase real-time polymerase chain reaction (rRT-PCR) is the mainstay of diagnosis of COVID-19. However, it has not been fully investigated whether infectious viruses are contained in SARS-CoV-2 genome-positive specimens examined using the rRT-PCR test. In this study, we examined the correlation between the threshold Cycle (Ct) value obtained from the rRT-PCR test and virus isolation in cultured cells, using 533 consecutive clinical specimens of COVID-19 patients. The virus was isolated from specimens with a Ct value of less than 30 cycles, and the lower the Ct value, the more efficient the isolation rate. A cytopathic effect due to herpes simplex virus type 1 contamination was observed in one sample with a Ct value of 35 cycles. In a comparison of VeroE6/TMPRSS2 cells and VeroE6 cells used for virus isolation, VeroE6/TMPRSS2 cells isolated the virus 1.7 times more efficiently than VeroE6 cells. There was no significant difference between the two cells in the mean Ct value of the detectable sample. In conclusion, Lower Ct values in the PCR test were associated with higher virus isolation rates, and VeroE6/TMPRSS2 cells were able to isolate viruses more efficiently than VeroE6 cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Line , Diagnostic Tests, Routine , Humans , Real-Time Polymerase Chain Reaction
9.
J Med Virol ; 94(1): 147-153, 2022 01.
Article in English | MEDLINE | ID: covidwho-1363704

ABSTRACT

This study aimed to determine the frequency of SARS-CoV-2 RNA in serum and its association with the clinical severity of COVID-19. This retrospective cohort study performed at Toyama University Hospital included consecutive patients with confirmed COVID-19. The prevalence of SARS-CoV-2 RNAemia and the strength of its association with clinical severity variables were examined. Fifty-six patients were included in this study. RNAemia was detected in 19.6% (11/56) patients on admission, and subsequently in 1.0% (1/25), 50.0% (6/12), and 100.0% (4/4) moderate, severe, and critically ill patients, respectively. Patients with RNAemia required more frequent oxygen supplementation (90.0% vs. 13.3%), ICU admission (81.8% vs. 6.7%), and invasive mechanical ventilation (27.3% vs. 0.0%). Among patients with RNAemia, the median viral loads of nasopharyngeal (NP) swabs that were collected around the same time as the serum sample were significantly higher in critically ill (5.4 log10 copies/µl; interquartile range [IQR]: 4.2-6.3) than in moderate-severe cases (2.6 log10 copies/µl; [IQR: 1.1-4.5]; p = 0.030) and were significantly higher in nonsurvivors (6.2 log10 copies/µl [IQR: 6.0-6.5]) than in survivors (3.9 log10 copies/µl [IQR: 1.6-4.6]; p = 0.045). This study demonstrated a relatively high proportion of SARS-CoV-2 RNAemia and an association between RNAemia and clinical severity. Moreover, among the patients with RNAemia, the viral loads of NP swabs were correlated with disease severity and mortality, suggesting the potential utility of combining serum testing with NP tests as a prognostic indicator for COVID-19, with higher quality than each separate test.


Subject(s)
COVID-19/virology , Nasopharynx/virology , RNA, Viral/blood , SARS-CoV-2/isolation & purification , Viral Load , Viremia , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/physiopathology , Child , Critical Illness , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Severity of Illness Index , Young Adult
10.
Sci Rep ; 11(1): 16535, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1360210

ABSTRACT

Adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics remain largely unknown. The neutralizing antibody (NAb) levels in patients with coronavirus disease 2019 (COVID-19) are helpful for understanding the pathology. Using SARS-CoV-2 pseudotyped virus, serum sample neutralization values in symptomatic COVID-19 patients were measured using the chemiluminescence reduction neutralization test (CRNT). At least two sequential serum samples collected during hospitalization were analyzed to assess NAbs neutralizing activity dynamics at different time points. Of the 11 patients, four (36.4%), six (54.5%), and one (9.1%) had moderate, severe, and critical disease, respectively. Fifty percent neutralization (N50%-CRNT) was observed upon admission in 90.9% (10/11); all patients acquired neutralizing activity 2-12 days after onset. In patients with moderate disease, neutralization was observed at earliest within two days after symptom onset. In patients with severe-to-critical disease, neutralization activity increased, plateauing 9-16 days after onset. Neutralization activity on admission was significantly higher in patients with moderate disease than in patients with severe-to-critical disease (relative % of infectivity, 6.4% vs. 41.1%; P = .011). Neutralization activity on admission inversely correlated with disease severity. The rapid NAb response may play a crucial role in preventing the progression of COVID-19.


Subject(s)
Adaptive Immunity , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Disease Progression , Female , Humans , Male , Middle Aged , Neutralization Tests/statistics & numerical data , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors
11.
Microbiol Immunol ; 64(1): 33-51, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-1262996

ABSTRACT

The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.


Subject(s)
Adjuvants, Immunologic/pharmacology , Coronavirus Infections/prevention & control , Gold/chemistry , Immunoglobulin G/immunology , Lung/immunology , Metal Nanoparticles/chemistry , Severe Acute Respiratory Syndrome/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Analysis of Variance , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Disease Models, Animal , Female , Immunization , Lung/pathology , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , SARS Virus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics , Toll-Like Receptors , Vaccination , Vaccines, Synthetic , Vero Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/pharmacology , Viral Vaccines/therapeutic use
12.
Virol J ; 18(1): 16, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1059645

ABSTRACT

BACKGROUND: SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. METHODS: To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). RESULTS: The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. CONCLUSIONS: In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Convalescence , Humans , Inhibitory Concentration 50 , Luminescence , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Virol J ; 18(1): 16, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1024369

ABSTRACT

BACKGROUND: SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. METHODS: To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). RESULTS: The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. CONCLUSIONS: In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Convalescence , Humans , Inhibitory Concentration 50 , Luminescence , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
14.
Biomol Ther (Seoul) ; 29(3): 282-289, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1022077

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

15.
PLoS One ; 15(12): e0243597, 2020.
Article in English | MEDLINE | ID: covidwho-967413

ABSTRACT

OBJECTIVE: To investigate the relationship between viral load and secondary transmission in novel coronavirus disease 2019 (COVID-19). METHODS: Epidemiological and clinical data were obtained from immunocompetent laboratory-confirmed patients with COVID-19 who were admitted to and/or from whom viral loads were measured at Toyama University Hospital. Using a case-control approach, index patients who transmitted the disease to at least one other patient were analysed as "cases" (index patients) compared with patients who were not the cause of secondary transmission (non-index patients, analysed as "controls"). The viral load time courses were assessed between the index and non-index symptomatic patients using non-linear regression employing a standard one-phase decay model. RESULTS: In total, 28 patients were included in the analysis. Median viral load at the initial sample collection was significantly higher in symptomatic than in asymptomatic patients and in adults than in children. Among symptomatic patients (n = 18), non-linear regression models showed that the estimated viral load at onset was higher in the index than in the non-index patients (median [95% confidence interval]: 6.6 [5.2-8.2] vs. 3.1 [1.5-4.8] log copies/µL, respectively). In adult (symptomatic and asymptomatic) patients (n = 21), median viral load at the initial sample collection was significantly higher in the index than in the non-index patients (p = 0.015, 3.3 vs. 1.8 log copies/µL, respectively). CONCLUSIONS: High nasopharyngeal viral loads around onset may contribute to secondary transmission of COVID-19. Viral load may help provide a better understanding of why transmission is observed in some instances, but not in others, especially among household contacts.


Subject(s)
COVID-19 , Models, Biological , Nasopharynx , SARS-CoV-2/metabolism , Viral Load , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/transmission , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nasopharynx/metabolism , Nasopharynx/virology
16.
J Infect Chemother ; 26(12): 1324-1327, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-723195

ABSTRACT

Most patients with coronavirus disease 2019 (COVID-19) have just only mild symptoms, but about 5% are very severe. Although extracorporeal membranous oxygenation (ECMO) is sometimes used in critically patients with COVID-19, ECMO is only an adjunct, not the main treatment. If the patient's condition deteriorates and it is determined to be irreversible, it is necessary to decide to stop ECMO. A 54-year-old man was admitted on day 6 of onset with a chief complaint of high fever and cough. Computed tomography (CT) showed a ground glass opacity in both lungs, and reverse transcription-polymerase chain reaction (RT-PCR) diagnosed COVID-19. He was admitted to the hospital and started to receive oxygen and favipiravir. After that, his respiratory condition deteriorated, and he was intubated and ventilated on day 9 of onset, and ECMO was introduced on day 12. Two days after the introduction of ECMO, C-reactive protein (CRP) increased, chest X-p showed no improvement in pneumonia, and PaO2/FiO2 decreased again. As D-dimer rose and found a blood clot in the ECMO circuit, we had to decide whether to replace the circuit and continue with ECMO or stop ECMO. At this time, the viral load by RT-PCR was drastically reduced to about 1/1750. We decided to continue ECMO therapy and replaced the circuit. The patient's respiratory status subsequently improved and ECMO was stopped on day 21 of onset. In conclusion, viral load measurement by RT-PCR may be one of the indicators for promoting the treatment of severe COVID-19 patients.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/therapy , Coronavirus Infections/virology , Extracorporeal Membrane Oxygenation/methods , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Viral Load/methods , Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Decision Making , Hospitalization , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pyrazines/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL