Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
2.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1989458

ABSTRACT

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) transmission occurs even among fully vaccinated individuals;thus, prompt identification of infected patients is central to control viral circulation. Antigen rapid diagnostic tests (Ag-RDTs) are highly specific, but sensitivity is variable. Discordant RT-qPCR vs. Ag-RDT results are reported, raising the question of whether negative Ag-RDT in positive RT-qPCR samples could imply the absence of infectious viruses. To study the relationship between negative Ag-RDT results with virological, molecular, and serological parameters, we selected a cross-sectional and a follow-up dataset and analyzed virus culture, subgenomic RNA quantification, and sequencing to determine infectious viruses and mutations. We demonstrated that RT-qPCR positive while SARS-CoV-2 Ag-RDT negative discordant results correlate with the absence of infectious virus in nasopharyngeal samples. A decrease in sgRNA detection together with an expected increase in detectable anti-S and anti-N IgGs was also verified in these samples. The data clearly demonstrate that a negative Ag-RDT sample is less likely to harbor infectious SARS-CoV-2 and, consequently, has a lower transmissible potential.

3.
Biochem Eng J ; 186: 108537, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1936085

ABSTRACT

Serological tests detect antibodies generated by infection or vaccination, and are indispensable tools along different phases of a pandemic, from early monitoring of pathogen spread up to seroepidemiological studies supporting immunization policies. This work discusses the development of an accurate and affordable COVID-19 antibody test, from production of a recombinant protein antigen up to test validation and economic analysis. We first developed a cost-effective, scalable technology to produce SARS-COV-2 spike protein and then used this antigen to develop an enzyme-linked immunosorbent assay (ELISA). A receiver operator characteristic (ROC) analysis allowed optimizing the cut-off and confirmed the high accuracy of the test: 98.6% specificity and 95% sensitivity for 11+ days after symptoms onset. We further showed that dried blood spots collected by finger pricking on simple test strips could replace conventional plasma/serum samples. A cost estimate was performed and revealed a final retail price in the range of one US dollar, reflecting the low cost of the ELISA test platform and the elimination of the need for venous blood sampling and refrigerated sample handling in clinical laboratories. The presented workflow can be completed in 4 months from first antigen expression to final test validation. It can be applied to other pathogens and in future pandemics, facilitating reliable and affordable seroepidemiological surveillance also in remote areas and in low-income countries.

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1939959

ABSTRACT

The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.

5.
J Exp Med ; 219(9)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-1922148

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a global problem in part because of the emergence of variants of concern that evade neutralization by antibodies elicited by prior infection or vaccination. Here we report on human neutralizing antibody and memory responses to the Gamma variant in a cohort of hospitalized individuals. Plasma from infected individuals potently neutralized viruses pseudotyped with Gamma SARS-CoV-2 spike protein, but neutralizing activity against Wuhan-Hu-1-1, Beta, Delta, or Omicron was significantly lower. Monoclonal antibodies from memory B cells also neutralized Gamma and Beta pseudoviruses more effectively than Wuhan-Hu-1. 69% and 34% of Gamma-neutralizing antibodies failed to neutralize Delta or Wuhan-Hu-1. Although Class 1 and 2 antibodies dominate the response to Wuhan-Hu-1 or Beta, 54% of antibodies elicited by Gamma infection recognized Class 3 epitopes. The results have implications for variant-specific vaccines and infections, suggesting that exposure to variants generally provides more limited protection to other variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
6.
Antiviral Res ; 205: 105373, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914152

ABSTRACT

COVID-19 is marked by extensive damage to the respiratory system, often accompanied by systemic manifestations, due to both viral cytopathic effects and hyperinflammatory syndrome. Therefore, the development of new therapeutic strategies or drug repurposing aiming to control virus replication and inflammation are required to mitigate the impact of the disease. Hydroxypropyl-beta-cyclodextrin (HP-BCD) is a cholesterol-sequestering agent with antiviral activity that has been demonstrated against enveloped viruses in in vitro and in vivo experimental models. We also demonstrated that HP-BCD has an immunomodulatory effect, inhibiting the production of selected proinflammatory cytokines induced by microbial products. Importantly, this drug has been used in humans for decades as an excipient in drug delivery systems and as a therapeutic agent in the treatment of Niemann pick C disease. The safety profile for this compound is well established. Here, we investigated whether HP-BCD would affect SARS-CoV-2 replication and virus-induced inflammatory response, using established cell lines and primary human cells. Treating virus or cells with HP-BCD significantly inhibited SARS-CoV-2 replication with a high selective index. A broad activity against distinct SARS-CoV-2 variants was evidenced by a remarkable reduction in the release of infectious particles. The drug did not alter ACE2 surface expression, but affected cholesterol accumulation into intracellular replication complexes, lowering virus RNA and protein levels, and reducing virus-induced cytopathic effects. Virus replication was also impaired by HP-BCD in Calu-3 pulmonary cell line and human primary monocytes, in which not only the virus, but also the production of proinflammatory cytokines were significantly inhibited. Given the pathophysiology of COVID-19 disease, these data indicate that the use HP-BCD, which inhibits both SARS-CoV2 replication and production of proinflammatory cytokines, as a potential COVID-19 therapeutic warrants further investigation.


Subject(s)
COVID-19 , SARS-CoV-2 , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , COVID-19/drug therapy , Cholesterol/metabolism , Cytokines/metabolism , Humans , RNA, Viral , Virus Replication
7.
Microbiol Spectr ; 10(3): e0125022, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1874516

ABSTRACT

Community testing is a crucial tool for the early identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission control. The emergence of the highly mutated Omicron variant (B.1.1.529) raised concerns about its primary site of replication, impacting sample collection and its detectability by rapid antigen tests. We tested the performance of the Panbio antigen rapid diagnostic test (Ag-RDT) using nasal and oral specimens for COVID-19 diagnosis in 192 symptomatic individuals, with quantitative reverse transcription-PCR (RT-qPCR) of nasopharyngeal samples as a control. Variant of concern (VOC) investigation was performed with the 4Plex SARS-CoV-2 screening kit. The SARS-CoV-2 positivity rate was 66.2%, with 99% of the positive samples showing an amplification profile consistent with that of the Omicron variant. Nasal Ag-RDT showed higher sensitivity (89%) than oral (12.6%) Ag-RDT. Our data showed good performance of the Ag-RDT in a pandemic scenario dominated by the Omicron VOC. Furthermore, our data also demonstrated that the Panbio COVID-19 antigen rapid diagnostic test does not provide good sensitivity with oral swabs for Omicron Ag-RDT detection. IMPORTANCE This study showed that the antigen rapid test for COVID19 worked fine using nasal swabs when it was utilized in patients infected with the Omicron variant, showing a concordance with PCR in 93% of patients tested. The nasal swab yielded more reliable results than the oral swab when an antigen rapid diagnosis test (the Panbio COVID-19 antigen rapid diagnostic test) was used in patients infected with the Omicron variant.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Diagnostic Tests, Routine , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
8.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330835

ABSTRACT

Community testing is a crucial tool for the early identification of SARS-CoV-2 infection and transmission control. The emergence of the highly mutated Omicron variant (B.1.1.259) raised concerns about its primary site of replication, impacting sample collection, and its detectability by rapid antigens tests. We tested the Antigen Rapid Diagnostic Test (Ag-RDT) performance using nasal, oral, and saliva specimens for COVID-19 diagnosis in 192 symptomatic individuals, using RT-qPCR from nasopharyngeal samples as control. Variant of Concern (VOC) investigation was determined by the 4Plex SARS-CoV-2 screening kit. SARS-CoV-2 positivity rate was 66.2%, with 99% of the positive samples showing an amplification profile consistent with that of the Omicron variant. Nasal Ag-RDT showed higher sensitivity (89%) than oral (12.6%) and saliva (22.1%) Ag-RDTs. Our data showed the good performance of the Ag-RDT in a pandemic scenario dominated by the Omicron VOC. Furthermore, our data also demonstrated that nasal specimens perform better than oral and saliva ones for Omicron Ag-RDT detection.

9.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330794

ABSTRACT

SARS-CoV-2 transmission occurs even among fully vaccinated individuals;thus, prompt identification of infected patients is central to control viral circulation. Antigen rapid diagnostic tests (Ag-RDT) are highly specific, but sensitivity is variable. Discordant RT- qPCR vs Ag-RDT results are reported, raising the question of whether negative Ag-RDT in positive RT-qPCR samples could imply the absence of infectious viruses. To study the relationship between a negative Ag-RDT results with virological, molecular, and serological parameters, we selected a cross sectional and a follow-up dataset and analyzed virus culture, subgenomic RNA quantification, and sequencing to determine infectious viruses and mutations. We demonstrated that a positive SARS-CoV-2 Ag-RDT result correlates with the presence of infectious virus in nasopharyngeal samples. A decrease in sgRNA detection together with an expected increase in detectable anti-S and anti-N IgGs was verified in negative Ag-RDT / positive RT-qPCR samples. The data clearly demonstrates the less likelihood of a negative Ag-RDT sample to harbor infectious SARS-CoV-2 and consequently with a lower transmissible potential.

10.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1733144

ABSTRACT

In this study, we report the first case of intra-host SARS-CoV-2 recombination during a coinfection by the variants of concern (VOC) AY.33 (Delta) and P.1 (Gamma) supported by sequencing reads harboring a mosaic of lineage-defining mutations. By using next-generation sequencing reads intersecting regions that simultaneously overlap lineage-defining mutations from Gamma and Delta, we were able to identify a total of six recombinant regions across the SARS-CoV-2 genome within a sample. Four of them mapped in the spike gene and two in the nucleocapsid gene. We detected mosaic reads harboring a combination of lineage-defining mutations from each VOC. To our knowledge, this is the first report of intra-host RNA-RNA recombination between two lineages of SARS-CoV-2, which can represent a threat to public health management during the COVID-19 pandemic due to the possibility of the emergence of viruses with recombinant phenotypes.

11.
Mem Inst Oswaldo Cruz ; 116: e210176, 2022.
Article in English | MEDLINE | ID: covidwho-1725021

ABSTRACT

BACKGROUND: During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES: We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS: Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS: Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS: We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.


Subject(s)
COVID-19 , Coinfection , Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2
13.
J Clin Virol ; 147: 105080, 2022 02.
Article in English | MEDLINE | ID: covidwho-1693299

ABSTRACT

BACKGROUND: Viral diversity presents an ongoing challenge for diagnostic tests, which need to accurately detect all circulating variants. The Abbott Global Surveillance program monitors severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and their impact on diagnostic test performance. OBJECTIVES: To evaluate the capacity of Abbott molecular, antigen, and serologic assays to detect circulating SARS-CoV-2 variants, including all current variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta). STUDY DESIGN: Dilutions of variant virus cultures (B.1.1.7, B.1.351, B.1.429, B.1.526.1, B.1.526.2, B.1.617.1, B.1.617.2, P.1, R.1 and control isolate WA1) and a panel of N = 248 clinical samples from patients with sequence confirmed variant infections (B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, B.1.526.1, B.1.526.2, P.1, P.2, R.1) were evaluated on at least one assay: Abbott ID NOW COVID-19, m2000 RealTime SARS-CoV-2, Alinity m SARS-CoV-2, and Alinity m Resp-4-Plex molecular assays; the BinaxNOW COVID-19 Ag Card and Panbio COVID-19 Ag Rapid Test Device; and the ARCHITECT/Alinity i SARS-CoV-2 IgG and AdviseDx IgM assays, Panbio COVID-19 IgG assay, and ARCHITECT/Alinity i AdviseDx SARS-CoV-2 IgG II assay. RESULTS: Consistent with in silico predictions, each molecular and antigen assay detected VOC virus cultures with equivalent sensitivity to the WA1 control strain. Notably, 100% of all tested variant patient specimens were detected by molecular assays (N = 197 m2000, N = 88 Alinity m, N = 99 ID NOW), and lateral flow assays had a sensitivity of >94% for specimens with genome equivalents (GE) per device above 4 log (85/88, Panbio; 54/57 Binax). Furthermore, Abbott antibody assays detected IgG and IgM in 94-100% of sera from immune competent B.1.1.7 patients 15-26 days after symptom onset. CONCLUSIONS: These data confirm variant detection for 11 SARS-CoV-2 assays, which is consistent with each assay target region being highly conserved. Importantly, alpha, beta, gamma, and delta VOCs were detected by molecular and antigen assays, indicating that these tests may be suitable for widescale use where VOCs predominate.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Sensitivity and Specificity , Serologic Tests
14.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310332

ABSTRACT

Background: Brazilian strategy to overcome the spread of COVID-19 has been particularly criticized due to the lack of a national coordinating effort and an appropriate testing program. Here, a successful approach to control the spread of COVID-19 transmission is described by the engagement of public (university and governance) and private sectors (hospitals and oil companies) in Macaé, state of Rio de Janeiro, Brazil, a city known as the National Oil Capital. Methods Until the 38th epidemiological week, over two percent of the 206,728 citizens were subjected to symptom analysis and massive RT-qPCR testing by the Federal University of Rio de Janeiro, with positive individuals being notified up to 48 hours after swab collection. Geocodification and spatial cluster analysis were used to limit COVID-19 spreading in Macaé. Findings: Within the first semester after the outbreak of COVID-19 in Brazil, Macaé recorded 1.8% of fatality associated to COVID-19 up to the 38th epidemiological week, which was at least five times lower than the state capital (10.92%). Overall, considering the successful experience of this joint effort of private and public engagement in Macaé, our data suggest that the development of a similar strategy country wise would have saved over 50,000 lives. Interpretation: Quarantine decree by the local government, molecular massive testing coupled to scientific analysis of COVID-19 spreading prevented the catastrophic consequences of the pandemic as seen in other populous cities within the state of Rio de Janeiro and elsewhere in Brazil.

15.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308938

ABSTRACT

We used the trimeric spike (S) glycoprotein (residues 1-1208) in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by anti-spike ELISA were above 1:106, and neutralizing antibody titer against an early isolate of authentic virus (WT) was 1:14,604 (average PRNT90), which is 140-fold higher than the average neutralizing titer of plasma from three convalescent COVID-19 patients analyzed for comparison. Using the same technology routinely used for industrial production of other horse hyperimmune products, plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab’)2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Repeating the hyperimmunization in a second group of horses confirmed the very high neutralizing titers in serum and in a GMP clinical F(ab’)2 lot. Virus-neutralizing activity in samples from mice that received the F(ab’)22 was similar against WT and P.2 but displaced to higher concentrations by 0.39 log units against P.1. The neutralizing activity against P.1 can be explained by the polyclonal nature of the raised antibody against the whole spike protein. These results support the possibility of using equine F(ab’)2 preparation for the clinical treatment of COVID patients.

16.
Braz J Infect Dis ; 25(5): 101630, 2021.
Article in English | MEDLINE | ID: covidwho-1604138

ABSTRACT

INTRODUCTION: In the current standard of care (SoC) RT-PCR method for COVID-19, the patient's swab was extracted in viral transport media (VTM). For the Panbio™ COVID-19 Ag Rapid Test, the patient swab is flushed out in extraction buffer, of which a small fraction is used for testing, leaving more than half the sample unused. This study was designed to show that RT-PCR results from the residual sample of the Panbio™ COVID-19 Ag Rapid Test (called Novel RT-PCR) are not worse than the SoC RT-PCR result. METHODS: The study was performed using (1) dilution series of five patient samples, and (2) 413 patient samples comparing SOC versus Novel RT-PCR results. RESULTS: For the dilution series samples, all tested positive by both methods. The bias between Ct values of Novel RT-PCR and SoC RT-PCR did not exceed 3.00 Ct using primers N1 and N2. A total of 413 COVID symptomatic patients seeking COVID testing were tested, of which 89 patients tested positive and 324 tested negative with SoC RT-PCR. In 324 patients who tested negative with SoC RT-PCR, 323 tested negative with Novel RT-PCR, and one (1) tested positive. Out of 89 who tested positive with SoC RT-PCR, 80 tested positive with the Novel RT-PCR, and nine patients showed a negative test result. The Overall Percent Agreement for the 413 valid patient sample pairs was 97.5 [95% CI 97 to 98]. CONCLUSION: The study demonstrated that the performance of the Novel RT-PCR method is acceptable compared to the SoC RT-PCR method and can be a useful tool to perform RT-PCR without the need for new swab collections.


Subject(s)
COVID-19 , Antigens, Viral , COVID-19 Testing , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
17.
EBioMedicine ; 75: 103774, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587927

ABSTRACT

BACKGROUND: Antigen-detecting rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 are important diagnostic tools. We assessed clinical performance and ease-of-use of seven Ag-RDTs in a prospective, manufacturer-independent, multi-centre cross-sectional diagnostic accuracy study to inform global decision makers. METHODS: Unvaccinated participants suspected of a first SARS-CoV-2 infection were recruited at six sites (Germany, Brazil). Ag-RDTs were evaluated sequentially, with collection of paired swabs for routine reverse transcription polymerase chain reaction (RT-PCR) testing and Ag-RDT testing. Performance was compared to RT-PCR overall and in sub-group analyses (viral load, symptoms, symptoms duration). To understandusability a System Usability Scale (SUS) questionnaire and ease-of-use (EoU) assessment were performed. FINDINGS: 7471 participants were included in the analysis. Sensitivities across Ag-RDTs ranged from 70·4%-90·1%, specificities were above 97·2% for all Ag-RDTs but one (93·1%).Ag-RDTs, Mologic, Bionote, Standard Q, showed diagnostic accuracy in line with WHO targets (> 80% sensitivity, > 97% specificity). All tests showed high sensitivity in the first three days after symptom onset (≥87·1%) and in individuals with viral loads≥ 6 log10SARS-CoV2 RNA copies/mL (≥ 88·7%). Usability varied, with Rapigen, Bionote and Standard Q reaching very good scores; 90, 88 and 84/100, respectively. INTERPRETATION: Variability in test performance is partially explained by variable viral loads in population evaluated over the course of the pandemic. All Ag-RDTs reach high sensitivity early in the disease and in individuals with high viral loads, supporting their role in identifying transmission relevant infections. For easy-to-use tests, performance shown will likely be maintained in routine implementation. FUNDING: Ministry of Science, Research and Arts, State of Baden-Wuerttemberg, Germany, internal funds from Heidelberg University Hospital, University Hospital Charité - Universitätsmedizin Berlin, UK Department of International Development, WHO, Unitaid.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing , COVID-19 , Point-of-Care Systems , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/immunology , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294617

ABSTRACT

The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid (Poly(I:C)) adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after one or two boosts. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4 + and CD8 + T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation (spike protein with Alum + Poly(I:C)) in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.

19.
Sci Rep ; 11(1): 20121, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1532138

ABSTRACT

The Brazilian strategy to overcome the spread of COVID-19 has been particularly criticized due to the lack of a national coordinating effort and an appropriate testing program. Here, a successful approach to control the spread of COVID-19 transmission is described by the engagement of public (university and governance) and private sectors (hospitals and oil companies) in Macaé, state of Rio de Janeiro, Brazil, a city known as the National Oil Capital. In 2020 between the 17th and 38th epidemiological week, over two percent of the 206,728 citizens were subjected to symptom analysis and RT-qPCR testing by the Federal University of Rio de Janeiro, with positive individuals being notified up to 48 h after swab collection. Geocodification and spatial cluster analysis were used to limit COVID-19 spreading in Macaé. Within the first semester after the outbreak of COVID-19 in Brazil, Macaé recorded 1.8% of fatalities associated with COVID-19 up to the 38th epidemiological week, which was at least five times lower than the state capital (10.6%). Overall, considering the successful experience of this joint effort of private and public engagement in Macaé, our data suggest that the development of a similar strategy countrywise could have contributed to a better control of the COVID-19 spread in Brazil. Quarantine decree by the local administration, comprehensive molecular testing coupled to scientific analysis of COVID-19 spreading, prevented the catastrophic consequences of the pandemic as seen in other populous cities within the state of Rio de Janeiro and elsewhere in Brazil.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19/epidemiology , Pandemics/statistics & numerical data , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Cities/epidemiology , Cities/statistics & numerical data , Female , Humans , Male , Middle Aged , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Young Adult
20.
Microbiol Spectr ; 9(3): e0085521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1522920

ABSTRACT

Current guidelines for patient isolation in COVID-19 cases recommend a symptom-based approach, averting the use of control real-time reverse transcription PCR (rRT-PCR) testing. However, we hypothesized that patients with persistently positive results by RT-PCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be potentially infectious for a prolonged time, even if immunocompetent and asymptomatic, which would demand a longer social isolation period than presently recommended. To test this hypothesis, 72 samples from 51 mildly symptomatic immunocompetent patients with long-lasting positive rRT-PCR results for SARS-CoV-2 were tested for their infectiousness in cell culture. The serological response of samples from those patients and virus genomic integrity were also analyzed. Infectious viruses were successfully isolated from 34.38% (22/64) of nasopharynx samples obtained 14 days or longer after symptom onset. Indeed, we observed successful virus isolation up to 128 days. Complete SARS-COV-2 genome integrity was demonstrated, suggesting the presence of replication-competent viruses. No correlation was found between the isolation of infectious viruses and rRT-PCR cycle threshold values or the humoral immune response. These findings call attention to the need to review current isolation guidelines, particularly in scenarios involving high-risk individuals. IMPORTANCE In this study, we evaluated mildly symptomatic immunocompetent patients with long-lasting positive rRT-PCR results for SARS-CoV-2. Infectious viruses were successfully isolated in cell cultures from nasopharynx samples obtained 14 days or longer after symptom onset. Indeed, we observed successful virus isolation for up to 128 days. Moreover, SARS-CoV-2 genome integrity was demonstrated by sequencing, suggesting the presence of replication-competent viruses. These data point out the risk of continuous SARS-CoV-2 transmission from patients with prolonged detection of SARS-CoV-2 in the upper respiratory tract, which has important implications for current precaution guidelines, particularly in settings where vulnerable individuals may be exposed (e.g., nursing homes and hospitals).


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adult , COVID-19/diagnosis , Female , Genome, Viral , Genomics , Humans , Male , Middle Aged , Nasopharynx/virology , Patient Isolation , Viral Load , Viral Proteins/isolation & purification , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL