Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1104828, 2023.
Article in English | MEDLINE | ID: covidwho-2245907

ABSTRACT

In December 2019, a novel pneumonic condition, Coronavirus disease 2019 (COVID- 19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in China and spread globally. The presentation of COVID-19 is more severe in persons with underlying medical conditions such as Tuberculosis (TB), Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) and other pneumonic conditions. All three diseases are of global concern and can significantly affect the lungs with characteristic cytokine storm, immunosuppression, and respiratory failure. Co-infections of SARS-CoV-2 with HIV and Mycobacterium tuberculosis (Mtb) have been reported, which may influence their pathogenesis and disease progression. Pulmonary TB and HIV/AIDS patients could be more susceptible to SARS-CoV-2 infection leading to lethal synergy and disease severity. Therefore, the biological and epidemiological interactions of COVID-19, HIV/AIDS, and TB need to be understood holistically. While data is needed to predict the impact of the COVID-19 pandemic on these existing diseases, it is necessary to review the implications of the evolving COVID-19 management on HIV/AIDS and TB control, including therapy and funding. Also, the impact of long COVID on patients, who may have this co-infection. Thus, this review highlights the implications of COVID-19, HIV/AIDS, and TB co-infection compares disease mechanisms, addresses growing concerns, and suggests a direction for improved diagnosis and general management.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Coinfection , Tuberculosis , Humans , Acquired Immunodeficiency Syndrome/epidemiology , HIV , Coinfection/epidemiology , Pandemics , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Tuberculosis/diagnosis
2.
BMC Med ; 20(1): 370, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053904

ABSTRACT

BACKGROUND: West Africa has recorded a relatively higher proportion of asymptomatic coronavirus disease 2019 (COVID-19) cases than the rest of the world, and West Africa-specific host factors could play a role in this discrepancy. Here, we assessed the association between COVID-19 severity among Ghanaians with their immune profiles and ABO blood groups. METHODS: Plasma samples were obtained from Ghanaians PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive individuals. The participants were categorized into symptomatic and asymptomatic cases. Cytokine profiling and antibody quantification were performed using Luminex™ multiplex assay whereas antigen-driven agglutination assay was used to assess the ABO blood groups. Immune profile levels between symptomatic and asymptomatic groups were compared using the two-tailed Mann-Whitney U test. Multiple comparisons of cytokine levels among and between days were tested using Kruskal-Wallis with Dunn's post hoc test. Correlations within ABO blood grouping (O's and non-O's) and between cytokines were determined using Spearman correlations. Logistic regression analysis was performed to assess the association of various cytokines with asymptomatic phenotype. RESULTS: There was a trend linking blood group O to reduced disease severity, but this association was not statistically significant. Generally, symptomatic patients displayed significantly (p < 0.05) higher cytokine levels compared to asymptomatic cases with exception of Eotaxin, which was positively associated with asymptomatic cases. There were also significant (p < 0.05) associations between other immune markers (IL-6, IL-8 and IL-1Ra) and disease severity. Cytokines' clustering patterns differ between symptomatic and asymptomatic cases. We observed a steady decrease in the concentration of most cytokines over time, while anti-SARS-CoV-2 antibody levels were stable for at least a month, regardless of the COVID-19 status. CONCLUSIONS: The findings suggest that genetic background and pre-existing immune response patterns may in part shape the nature of the symptomatic response against COVID-19 in a West African population. This study offers clear directions to be explored further in larger studies.


Subject(s)
COVID-19 , ABO Blood-Group System , Biomarkers , COVID-19/epidemiology , Cytokines , Ghana/epidemiology , Humans , Interleukin 1 Receptor Antagonist Protein , Interleukin-6 , Interleukin-8 , SARS-CoV-2
3.
Nat Commun ; 13(1): 2494, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1890179

ABSTRACT

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral/genetics , Ghana/epidemiology , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Future Microbiol ; 16: 919-925, 2021 08.
Article in English | MEDLINE | ID: covidwho-1329168

ABSTRACT

In the absence of potent antimicrobial agents, it is estimated that bacterial infections could cause millions of deaths. The emergence of COVID-19, its complex pathophysiology and the high propensity of patients to coinfections has resulted in therapeutic regimes that use a cocktail of antibiotics for disease management. Suboptimal antimicrobial stewardship in this era and the slow pace of drug discovery could result in large-scale drug resistance, narrowing future antimicrobial therapeutics. Thus, judicious use of current antimicrobials is imperative to keep up with existing and emerging infectious pathogens. Here, we provide insights into the potential implications of suboptimal antimicrobial stewardship, resulting from the emergence of COVID-19, on the spread of antimicrobial resistance.


Subject(s)
Antimicrobial Stewardship/methods , Bacterial Infections , COVID-19/epidemiology , Coinfection , Mycoses , Anti-Infective Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Coinfection/drug therapy , Coinfection/epidemiology , Hand Disinfection , Humans , Mycoses/drug therapy , Mycoses/epidemiology
5.
Front Immunol ; 12: 602848, 2021.
Article in English | MEDLINE | ID: covidwho-1094167

ABSTRACT

Sepsis is a life-threatening systemic illness attributed to a dysregulated host response to infection. Sepsis is a global burden killing ~11 million persons annually. In December 2019, a novel pneumonia condition termed coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged and has resulted in more than 1,535,982 deaths globally as of 8th December 2020. These two conditions share many pathophysiological and clinical features. Notably, both sepsis and COVID-19 patients experience consumptive thrombocytopenia, haemolytic anaemia, vascular microthrombosis, multi-organ dysfunction syndrome, coagulopathy, septic shock, respiratory failure, fever, leukopenia, hypotension, leukocytosis, high cytokine production and high predisposition to opportunistic infections. Considering the parallels in the immunopathogenesis and pathophysiological manifestations of sepsis and COVID-19, it is highly likely that sepsis care, which has a well-established history in most health systems, could inform on COVID-19 management. In view of this, the present perspective compares the immunopathogenesis and pathophysiology of COVID-19 and non-SARS-CoV-2 induced sepsis, and lessons from sepsis that can be applicable to COVID-19 management.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/physiology , Sepsis/diagnosis , Animals , COVID-19/therapy , Cytokine Release Syndrome , Humans , Hypovolemia , Immune Tolerance , Respiratory Insufficiency , Sepsis/therapy , Thrombosis
SELECTION OF CITATIONS
SEARCH DETAIL