Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Lancet Rheumatol ; 4(7): e490-e506, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1882682

ABSTRACT

Background: The risk of severe COVID-19 outcomes in people with immune-mediated inflammatory diseases and on immune-modifying drugs might not be fully mediated by comorbidities and might vary by factors such as ethnicity. We aimed to assess the risk of severe COVID-19 in adults with immune-mediated inflammatory diseases and in those on immune-modifying therapies. Methods: We did a cohort study, using OpenSAFELY (an analytics platform for electronic health records) and TPP (a software provider for general practitioners), analysing routinely collected primary care data linked to hospital admission, death, and previously unavailable hospital prescription data. We included people aged 18 years or older on March 1, 2020, who were registered with TPP practices with at least 12 months of primary care records before March, 2020. We used Cox regression (adjusting for confounders and mediators) to estimate hazard ratios (HRs) comparing the risk of COVID-19-related death, critical care admission or death, and hospital admission (from March 1 to Sept 30, 2020) in people with immune-mediated inflammatory diseases compared with the general population, and in people with immune-mediated inflammatory diseases on targeted immune-modifying drugs (eg, biologics) compared with those on standard systemic treatment (eg, methotrexate). Findings: We identified 17 672 065 adults; 1 163 438 adults (640 164 [55·0%] women and 523 274 [45·0%] men, and 827 457 [71·1%] of White ethnicity) had immune-mediated inflammatory diseases, and 16 508 627 people (8 215 020 [49·8%] women and 8 293 607 [50·2%] men, and 10 614 096 [64·3%] of White ethnicity) were included as the general population. Of 1 163 438 adults with immune-mediated inflammatory diseases, 19 119 (1·6%) received targeted immune-modifying therapy and 181 694 (15·6%) received standard systemic therapy. Compared with the general population, adults with immune-mediated inflammatory diseases had an increased risk of COVID-19-related death after adjusting for confounders (age, sex, deprivation, and smoking status; HR 1·23, 95% CI 1·20-1·27) and further adjusting for mediators (body-mass index [BMI], cardiovascular disease, diabetes, and current glucocorticoid use; 1·15, 1·11-1·18). Adults with immune-mediated inflammatory diseases also had an increased risk of COVID-19-related critical care admission or death (confounder-adjusted HR 1·24, 95% CI 1·21-1·28; mediator-adjusted 1·16, 1·12-1·19) and hospital admission (confounder-adjusted 1·32, 1·29-1·35; mediator-adjusted 1·20, 1·17-1·23). In post-hoc analyses, the risk of severe COVID-19 outcomes in people with immune-mediated inflammatory diseases was higher in non-White ethnic groups than in White ethnic groups (as it was in the general population). We saw no evidence of increased COVID-19-related death in adults on targeted, compared with those on standard systemic, therapy after adjusting for confounders (age, sex, deprivation, BMI, immune-mediated inflammatory diseases [bowel, joint, and skin], cardiovascular disease, cancer [excluding non-melanoma skin cancer], stroke, and diabetes (HR 1·03, 95% CI 0·80-1·33), and after additionally adjusting for current glucocorticoid use (1·01, 0·78-1·30). There was no evidence of increased COVID-19-related death in adults prescribed tumour necrosis factor inhibitors, interleukin (IL)-12/IL­23 inhibitors, IL-17 inhibitors, IL-6 inhibitors, or Janus kinase inhibitors compared with those on standard systemic therapy. Rituximab was associated with increased COVID-19-related death (HR 1·68, 95% CI 1·11-2·56), with some attenuation after excluding people with haematological malignancies or organ transplants (1·54, 0·95-2·49). Interpretation: COVID-19 deaths and hospital admissions were higher in people with immune-mediated inflammatory diseases. We saw no increased risk of adverse COVID-19 outcomes in those on most targeted immune-modifying drugs for immune-mediated inflammatory diseases compared with those on standard systemic therapy. Funding: UK Medical Research Council, NIHR Biomedical Research Centre at King's College London and Guy's and St Thomas' NHS Foundation Trust, and Wellcome Trust.

2.
Vaccine ; 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1882615

ABSTRACT

INTRODUCTION: We investigated the potential association of COVID-19 vaccination with three acute neurological events: Guillain-Barré syndrome (GBS), transverse myelitis and Bell's palsy. METHODS: With the approval of NHS England we analysed primary care data from >17 million patients in England linked to emergency care, hospital admission and mortality records in the OpenSAFELY platform. Separately for each vaccine brand, we used a self-controlled case series design to estimate the incidence rate ratio for each outcome in the period following vaccination (4-42 days for GBS, 4-28 days for transverse myelitis and Bell's palsy) compared to a within-person baseline, using conditional Poisson regression. RESULTS: Among 7,783,441 ChAdOx1 vaccinees, there was an increased rate of GBS (N = 517; incidence rate ratio 2·85; 95% CI2·33-3·47) and Bell's palsy (N = 5,350; 1·39; 1·27-1·53) following a first dose of ChAdOx1 vaccine, corresponding to 11.0 additional cases of GBS and 17.9 cases of Bell's palsy per 1 million vaccinees if causal. For GBS this applied to the first, but not the second, dose. There was no clear evidence of an association of ChAdOx1 vaccination with transverse myelitis (N = 199; 1·51; 0·96-2·37). Among 5,729,152 BNT162b2 vaccinees, there was no evidence of any association with GBS (N = 283; 1·09; 0·75-1·57), transverse myelitis (N = 109; 1·62; 0·86-3·03) or Bell's palsy (N = 3,609; 0·89; 0·76-1·03). Among 255,446 mRNA-1273 vaccine recipients there was no evidence of an association with Bell's palsy (N = 78; 0·88, 0·32-2·42). CONCLUSIONS: COVID-19 vaccines save lives, but it is important to understand rare adverse events. We observed a short-term increased rate of Guillain-Barré syndrome and Bell's palsy after first dose of ChAdOx1 vaccine. The absolute risk, assuming a causal effect attributable to vaccination, was low.

3.
Wellcome Open Res ; 6: 360, 2021.
Article in English | MEDLINE | ID: covidwho-1876163

ABSTRACT

Background: At the outset of the COVID-19 pandemic, there was no routine comprehensive hospital medicines data from the UK available to researchers. These records can be important for many analyses including the effect of certain medicines on the risk of severe COVID-19 outcomes. With the approval of NHS England, we set out to obtain data on one specific group of medicines, "high-cost drugs" (HCD) which are typically specialist medicines for the management of long-term conditions, prescribed by hospitals to patients. Additionally, we aimed to make these data available to all approved researchers in OpenSAFELY-TPP. This report is intended to support all studies carried out in OpenSAFELY-TPP, and those elsewhere, working with this dataset or similar data. Methods: Working with the North East Commissioning Support Unit and NHS Digital, we arranged for collation of a single national HCD dataset to help inform responses to the COVID-19 pandemic. The dataset was developed from payment submissions from hospitals to commissioners. Results: In the financial year (FY) 2018/19 there were 2.8 million submissions for 1.1 million unique patient IDs recorded in the HCD. The average number of submissions per patient over the year was 2.6. In FY 2019/20 there were 4.0 million submissions for 1.3 million unique patient IDs. The average number of submissions per patient over the year was 3.1. Of the 21 variables in the dataset, three are now available for analysis in OpenSafely-TPP: Financial year and month of drug being dispensed; drug name; and a description of the drug dispensed. Conclusions: We have described the process for sourcing a national HCD dataset, making these data available for COVID-19-related analysis through OpenSAFELY-TPP and provided information on the variables included in the dataset, data coverage and an initial descriptive analysis.

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337044

ABSTRACT

Objective: To compare the effectiveness of sotrovimab (a neutralising monoclonal antibody) vs. molnupiravir (an antiviral) in preventing severe COVID-19 outcomes in non-hospitalised high-risk COVID-19 adult patients. Design: With the approval of NHS England, we conducted a real-world cohort study using the OpenSAFELY-TPP platform. Setting: Patient-level electronic health record data were obtained from 24 million people registered with a general practice in England that uses TPP software. The primary care data were securely linked with data on COVID-19 infection and therapeutics, hospital admission and death within the OpenSAFELY-TPP platform, covering a period where both medications were frequently prescribed in community settings. Participants: Non-hospitalised adult COVID-19 patients at high-risk of severe outcomes treated with sotrovimab or molnupiravir between December 16, 2021 and February 10, 2022. Interventions: Sotrovimab or molnupiravir administered in the community by COVID-19 Medicine Delivery Units. Main outcome measure: COVID-19 related hospitalisation or COVID-19 related death within 28 days after treatment initiation. Results: Patients treated with sotrovimab (n=3288) and molnupiravir (n=2663) were similar with respect to most baseline characteristics. The mean age of all 5951 patients was 52 (SD=16) years;59% were female, 89% White and 87% had three or more COVID-19 vaccinations. Within 28 days after treatment initiation, 84 (1.4%) COVID-19 related hospitalisations/deaths were observed (31 treated with sotrovimab and 53 with molnupiravir). Cox proportional hazards models stratified by area showed that after adjusting for demographics, high-risk cohort categories, vaccination status, calendar time, body mass index and other comorbidities, treatment with sotrovimab was associated with a substantially lower risk than treatment with molnupiravir (hazard ratio, HR=0.53, 95% CI: 0.32-0.88;P=0.014). Consistent results were obtained from propensity score weighted Cox models (HR=0.51, 95% CI: 0.31-0.83;P=0.007) and when restricted to fully vaccinated people (HR=0.52, 95% CI: 0.30-0.90;P=0.020). No substantial effect modifications by other characteristics were detected (all P values for interaction>0.10). Conclusion: In routine care of non-hospitalised high-risk adult patients with COVID-19 in England, those who received sotrovimab were at lower risk of severe COVID-19 outcomes than those receiving molnupiravir.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335343

ABSTRACT

Background: Patients surviving hospitalisation for COVID-19 are thought to be at high risk of cardiometabolic and pulmonary complications, but quantification of that risk is limited. We aimed to describe the overall burden of these complications in people after discharge from hospital with COVID-19.   Methods: :  Working on behalf of NHS England, we used linked primary care records, death certificate and hospital data from the OpenSAFELY platform. We constructed three cohorts: patients discharged following hospitalisation with COVID-19, patients discharged following pre-pandemic hospitalisation with pneumonia, and a frequency-matched cohort from the general population in 2019. We studied seven outcomes: deep vein thrombosis (DVT), pulmonary embolism (PE), ischaemic stroke, myocardial infarction (MI), heart failure, AKI and new type 2 diabetes mellitus (T2DM) diagnosis. Absolute rates were measured in each cohort and Fine and Gray models were used to estimate age/sex adjusted subdistribution hazard ratios comparing outcome risk between discharged COVID-19 patients and the two comparator cohorts. Results: :  Amongst the population of 77,347 patients discharged following hospitalisation with COVID-19, rates for the majority of outcomes peaked in the first month post-discharge, then declined over the following four months. Patients in the COVID-19 population had markedly higher risk of all outcomes compared to matched controls from the 2019 general population. Across the whole study period, the risk of outcomes was more similar when comparing patients discharged with COVID-19 to those discharged with pneumonia in 2019, although COVID-19 patients had higher risk of T2DM (15.2 versus 37.2 [rate per 1,000-person-years for COVID-19 versus pneumonia, respectively];SHR, 1.46 [95% CI: 1.31 - 1.63]).  Conclusions: :  Risk of cardiometabolic and pulmonary adverse outcomes is markedly raised following discharge from hospitalisation with COVID-19 compared to the general population. However, excess risks were similar to those seen following discharge post-pneumonia. Overall, this suggests a large additional burden on healthcare resources.

6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-335281

ABSTRACT

The SARS-CoV-2 Omicron variant is increasing in prevalence around the world. Accurate estimation of disease severity associated with Omicron is critical for pandemic planning. We found lower risk of accident and emergency (AE) attendance following SARS-CoV-2 infection with Omicron compared to Delta (HR: 0.39 (95% CI: 0.30 – 0.51;P<.0001). For AE attendances that lead to hospital admission, Omicron was associated with an 85% lower hazard compared with Delta (HR: 0.14 (95% CI: 0.09 – 0.24;P<.0001)). Conflicts of Interests Nothing to declare. Funding statement This work was supported by the Medical Research Council MR/V015737/1. TPP provided technical expertise and infrastructure within their data centre pro bono in the context of a national emergency. Rosalind Eggo is funded by HDR UK (grant: MR/S003975/1), MRC (grant: MC_PC 19065), NIHR (grant: NIHR200908).

7.
Lancet Reg Health Eur ; 14: 100295, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1747703

ABSTRACT

BACKGROUND: Residents in care homes have been severely impacted by COVID-19. We describe trends in the mortality risk among residents of care homes compared to private homes. METHODS: On behalf of NHS England we used OpenSAFELY-TPP to calculate monthly age-standardised risks of death due to all causes and COVID-19 among adults aged >=65 years between 1/2/2019 and 31/03/2021. Care home residents were identified using linkage to Care and Quality Commission data. FINDINGS: We included 4,340,648 people aged 65 years or older on the 1st of February 2019, 2.2% of whom were classified as residing in a care or nursing home. Age-standardised mortality risks were approximately 10 times higher among care home residents compared to those in private housing in February 2019: comparative mortality figure (CMF) = 10.59 (95%CI = 9.51, 11.81) among women, and 10.87 (9.93, 11.90) among men. By April 2020 these relative differences had increased to more than 17 times with CMFs of 17.57 (16.43, 18.79) among women and 18.17 (17.22, 19.17) among men. CMFs did not increase during the second wave, despite a rise in the absolute age-standardised COVID-19 mortality risks. INTERPRETATION: COVID-19 has had a disproportionate impact on the mortality of care home residents in England compared to older residents of private homes, but only in the first wave. This may be explained by a degree of acquired immunity, improved protective measures or changes in the underlying frailty of the populations. The care home population should be prioritised for measures aimed at controlling COVID-19. FUNDING: Medical Research Council MR/V015737/1.

8.
Clin Infect Dis ; 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1706197

ABSTRACT

BACKGROUND: The SARS-CoV-2 alpha variant (B.1.1.7) is associated with higher transmissibility than wild type virus, becoming the dominant variant in England by January 2021. We aimed to describe the severity of the alpha variant in terms of the pathway of disease from testing positive to hospital admission and death. METHODS: With the approval of NHS England, we linked individual-level data from primary care with SARS-CoV-2 community testing, hospital admission, and ONS all-cause death data. We used testing data with S-gene target failure as a proxy for distinguishing alpha and wild-type cases, and stratified Cox proportional hazards regression to compare the relative severity of alpha cases compared to wild type diagnosed from 16th November 2020 to 11th January 2021. RESULTS: Using data from 185,234 people who tested positive for SARS-CoV-2 in the community (alpha=93,153; wild-type=92,081), in fully adjusted analysis accounting for individual-level demographics and comorbidities as well as regional variation in infection incidence, we found alpha associated with 73% higher hazards of all-cause death (aHR: 1.73 (95% CI 1.41 - 2.13; P<.0001)) and 62% higher hazards of hospital admission (aHR: 1.62 ((95% CI 1.48 - 1.78; P<.0001), compared to wild-type virus. Among patients already admitted to ICU, the association between alpha and increased all-cause mortality was smaller and the confidence interval included the null (aHR: 1.20 (95% CI 0.74 - 1.95; P=0.45)). CONCLUSIONS: The SARS-CoV-2 alpha variant is associated with an increased risk of both hospitalisation and mortality than wild-type virus.

9.
Diagn Progn Res ; 6(1): 6, 2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1702772

ABSTRACT

BACKGROUND: Obtaining accurate estimates of the risk of COVID-19-related death in the general population is challenging in the context of changing levels of circulating infection. METHODS: We propose a modelling approach to predict 28-day COVID-19-related death which explicitly accounts for COVID-19 infection prevalence using a series of sub-studies from new landmark times incorporating time-updating proxy measures of COVID-19 infection prevalence. This was compared with an approach ignoring infection prevalence. The target population was adults registered at a general practice in England in March 2020. The outcome was 28-day COVID-19-related death. Predictors included demographic characteristics and comorbidities. Three proxies of local infection prevalence were used: model-based estimates, rate of COVID-19-related attendances in emergency care, and rate of suspected COVID-19 cases in primary care. We used data within the TPP SystmOne electronic health record system linked to Office for National Statistics mortality data, using the OpenSAFELY platform, working on behalf of NHS England. Prediction models were developed in case-cohort samples with a 100-day follow-up. Validation was undertaken in 28-day cohorts from the target population. We considered predictive performance (discrimination and calibration) in geographical and temporal subsets of data not used in developing the risk prediction models. Simple models were contrasted to models including a full range of predictors. RESULTS: Prediction models were developed on 11,972,947 individuals, of whom 7999 experienced COVID-19-related death. All models discriminated well between individuals who did and did not experience the outcome, including simple models adjusting only for basic demographics and number of comorbidities: C-statistics 0.92-0.94. However, absolute risk estimates were substantially miscalibrated when infection prevalence was not explicitly modelled. CONCLUSIONS: Our proposed models allow absolute risk estimation in the context of changing infection prevalence but predictive performance is sensitive to the proxy for infection prevalence. Simple models can provide excellent discrimination and may simplify implementation of risk prediction tools.

10.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322685

ABSTRACT

On March 11th 2020, the World Health Organization characterised COVID-19 as a pandemic. Responses to containing the spread of the virus have relied heavily on policies involving restricting contact between people. Evolving policies regarding shielding and individual choices about restricting social contact will rely heavily on perceived risk of poor outcomes from COVID-19. In order to make informed decisions, both individual and collective, good predictive models are required.   For outcomes related to an infectious disease, the performance of any risk prediction model will depend heavily on the underlying prevalence of infection in the population of interest. Incorporating measures of how this changes over time may result in important improvements in prediction model performance.  This protocol reports details of a planned study to explore the extent to which incorporating time-varying measures of infection burden over time improves the quality of risk prediction models for COVID-19 death in a large population of adult patients in England. To achieve this aim, we will compare the performance of different modelling approaches to risk prediction, including static cohort approaches typically used in chronic disease settings and landmarking approaches incorporating time-varying measures of infection prevalence and policy change, using COVID-19 related deaths data linked to longitudinal primary care electronic health records data within the OpenSAFELY secure analytics platform.

11.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320963

ABSTRACT

Background: Care home residents have been severely affected by the COVID-19 pandemic. Electronic Health Records (EHR) hold significant potential for studying the healthcare needs of this vulnerable population;however, identifying care home residents in EHR is not straightforward. We describe and compare three different methods for identifying care home residents in the newly created OpenSAFELY-TPP data analytics platform.  Methods: : Working on behalf of NHS England, we identified individuals aged 65 years or older potentially living in a care home on the 1st of February 2020 using (1) a complex address linkage, in which cleaned GP registered addresses were matched to old age care home addresses using data from the Care and Quality Commission (CQC);(2) coded events in the EHR;(3) household identifiers, age and household size to identify households with more than 3 individuals aged 65 years or older as potential care home residents. Raw addresses were not available to the investigators. Results: : Of 4,437,286 individuals aged 65 years or older, 2.27% were identified as potential care home residents using the complex address linkage, 1.96% using coded events, 3.13% using household size and age and 3.74% using either of these methods. 53,210 individuals (32.0% of all potential care home residents) were classified as care home residents using all three methods. Address linkage had the largest overlap with the other methods;93.3% of individuals identified as care home residents using the address linkage were also identified as such using either coded events or household age and size.  Conclusion: We have described the partial overlap between three methods for identifying care home residents in EHR, and provide detailed instructions for how to implement these in OpenSAFELY-TPP to support research into the impact of the COVID-19 pandemic on care home residents.

12.
The Lancet regional health. Europe ; 14:100295-100295, 2022.
Article in English | EuropePMC | ID: covidwho-1615360

ABSTRACT

Background Residents in care homes have been severely impacted by COVID-19. We describe trends in the mortality risk among residents of care homes compared to private homes. Methods On behalf of NHS England we used OpenSAFELY-TPP to calculate monthly age-standardised risks of death due to all causes and COVID-19 among adults aged >=65 years between 1/2/2019 and 31/03/2021. Care home residents were identified using linkage to Care and Quality Commission data. Findings We included 4,340,648 people aged 65 years or older on the 1st of February 2019, 2.2% of whom were classified as residing in a care or nursing home. Age-standardised mortality risks were approximately 10 times higher among care home residents compared to those in private housing in February 2019: comparative mortality figure (CMF) = 10.59 (95%CI = 9.51, 11.81) among women, and 10.87 (9.93, 11.90) among men. By April 2020 these relative differences had increased to more than 17 times with CMFs of 17.57 (16.43, 18.79) among women and 18.17 (17.22, 19.17) among men. CMFs did not increase during the second wave, despite a rise in the absolute age-standardised COVID-19 mortality risks. Interpretation COVID-19 has had a disproportionate impact on the mortality of care home residents in England compared to older residents of private homes, but only in the first wave. This may be explained by a degree of acquired immunity, improved protective measures or changes in the underlying frailty of the populations. The care home population should be prioritised for measures aimed at controlling COVID-19. Funding Medical Research Council MR/V015737/1

13.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296145

ABSTRACT

National guidance was issued during the COVID-19 pandemic to switch patients on warfarin to direct oral anticoagulants (DOACs) where appropriate as these require less frequent blood testing. DOACs are not recommended for patients with mechanical heart valves. We conducted a retrospective cohort study of DOAC prescribing in people with a record of a mechanical heart valve between September 2019 and May 2021, and describe the characteristics of this population. We identified 15,457 individuals with a mechanical heart valve recorded in their records, of whom 1058 (6.8%) had been prescribed a DOAC during the study period. 767 individuals with a record of a mechanical heart valve were currently prescribed a DOAC as of May 31st 2021. This is suggestive of inappropriate prescribing of DOACs in individuals with mechanical heart valves. Direct alerts have been issued to clinicians through their EHR software informing the issue. We show that the OpenSAFELY platform can be used for rapid audit and feedback to mitigate the indirect health impacts of COVID-19 on the NHS. We will monitor changes in prescribing for this risk group over the following months.

14.
Wellcome Open Res ; 6: 90, 2021.
Article in English | MEDLINE | ID: covidwho-1395316

ABSTRACT

Background: Care home residents have been severely affected by the COVID-19 pandemic. Electronic Health Records (EHR) hold significant potential for studying the healthcare needs of this vulnerable population; however, identifying care home residents in EHR is not straightforward. We describe and compare three different methods for identifying care home residents in the newly created OpenSAFELY-TPP data analytics platform.  Methods: Working on behalf of NHS England, we identified individuals aged 65 years or older potentially living in a care home on the 1st of February 2020 using (1) a complex address linkage, in which cleaned GP registered addresses were matched to old age care home addresses using data from the Care and Quality Commission (CQC); (2) coded events in the EHR; (3) household identifiers, age and household size to identify households with more than 3 individuals aged 65 years or older as potential care home residents. Raw addresses were not available to the investigators. Results: Of 4,437,286 individuals aged 65 years or older, 2.27% were identified as potential care home residents using the complex address linkage, 1.96% using coded events, 3.13% using household size and age and 3.74% using either of these methods. 53,210 individuals (32.0% of all potential care home residents) were classified as care home residents using all three methods. Address linkage had the largest overlap with the other methods; 93.3% of individuals identified as care home residents using the address linkage were also identified as such using either coded events or household age and size.  Conclusion: We have described the partial overlap between three methods for identifying care home residents in EHR, and provide detailed instructions for how to implement these in OpenSAFELY-TPP to support research into the impact of the COVID-19 pandemic on care home residents.

15.
Clin Infect Dis ; 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1393220

ABSTRACT

BACKGROUND: The SARS-CoV-2 alpha variant (B.1.1.7) is associated with higher transmissibility than wild type virus, becoming the dominant variant in England by January 2021. We aimed to describe the severity of the alpha variant in terms of the pathway of disease from testing positive to hospital admission and death. METHODS: With the approval of NHS England, we linked individual-level data from primary care with SARS-CoV-2 community testing, hospital admission, and ONS all-cause death data. We used testing data with S-gene target failure as a proxy for distinguishing alpha and wild-type cases, and stratified Cox proportional hazards regression to compare the relative severity of alpha cases compared to wild type diagnosed from 16th November 2020 to 11th January 2021. RESULTS: Using data from 185,234 people who tested positive for SARS-CoV-2 in the community (alpha=93,153; wild-type=92,081), in fully adjusted analysis accounting for individual-level demographics and comorbidities as well as regional variation in infection incidence, we found alpha associated with 73% higher hazards of all-cause death (aHR: 1.73 (95% CI 1.41 - 2.13; P<.0001)) and 62% higher hazards of hospital admission (aHR: 1.62 ((95% CI 1.48 - 1.78; P<.0001), compared to wild-type virus. Among patients already admitted to ICU, the association between alpha and increased all-cause mortality was smaller and the confidence interval included the null (aHR: 1.20 (95% CI 0.74 - 1.95; P=0.45)). CONCLUSIONS: The SARS-CoV-2 alpha variant is associated with an increased risk of both hospitalisation and mortality than wild-type virus.

16.
Br J Gen Pract ; 71(712): e806-e814, 2021 11.
Article in English | MEDLINE | ID: covidwho-1339630

ABSTRACT

BACKGROUND: Long COVID describes new or persistent symptoms at least 4 weeks after onset of acute COVID-19. Clinical codes to describe this phenomenon were recently created. AIM: To describe the use of long-COVID codes, and variation of use by general practice, demographic variables, and over time. DESIGN AND SETTING: Population-based cohort study in English primary care. METHOD: Working on behalf of NHS England, OpenSAFELY data were used encompassing 96% of the English population between 1 February 2020 and 25 May 2021. The proportion of people with a recorded code for long COVID was measured overall and by demographic factors, electronic health record software system (EMIS or TPP), and week. RESULTS: Long COVID was recorded for 23 273 people. Coding was unevenly distributed among practices, with 26.7% of practices having never used the codes. Regional variation ranged between 20.3 per 100 000 people for East of England (95% confidence interval [CI] = 19.3 to 21.4) and 55.6 per 100 000 people in London (95% CI = 54.1 to 57.1). Coding was higher among females (52.1, 95% CI = 51.3 to 52.9) than males (28.1, 95% CI = 27.5 to 28.7), and higher among practices using EMIS (53.7, 95% CI = 52.9 to 54.4) than those using TPP (20.9, 95% CI = 20.3 to 21.4). CONCLUSION: Current recording of long COVID in primary care is very low, and variable between practices. This may reflect patients not presenting; clinicians and patients holding different diagnostic thresholds; or challenges with the design and communication of diagnostic codes. Increased awareness of diagnostic codes is recommended to facilitate research and planning of services, and also surveys with qualitative work to better evaluate clinicians' understanding of the diagnosis.


Subject(s)
COVID-19 , Clinical Coding , COVID-19/complications , Cohort Studies , England , Female , Humans , Male , Primary Health Care
17.
BMJ ; 374: n1592, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1311065

ABSTRACT

OBJECTIVE: To assess the association between learning disability and risk of hospital admission and death from covid-19 in England among adults and children. DESIGN: Population based cohort study on behalf of NHS England using the OpenSAFELY platform. SETTING: Patient level data were obtained for more than 17 million people registered with a general practice in England that uses TPP software. Electronic health records were linked with death data from the Office for National Statistics and hospital admission data from NHS Secondary Uses Service. PARTICIPANTS: Adults (aged 16-105 years) and children (<16 years) from two cohorts: wave 1 (registered with a TPP practice as of 1 March 2020 and followed until 31 August 2020); and wave 2 (registered 1 September 2020 and followed until 8 February 2021). The main exposure group consisted of people on a general practice learning disability register; a subgroup was defined as those having profound or severe learning disability. People with Down's syndrome and cerebral palsy were identified (whether or not they were on the learning disability register). MAIN OUTCOME MEASURE: Covid-19 related hospital admission and covid-19 related death. Non-covid-19 deaths were also explored. RESULTS: For wave 1, 14 312 023 adults aged ≥16 years were included, and 90 307 (0.63%) were on the learning disability register. Among adults on the register, 538 (0.6%) had a covid-19 related hospital admission; there were 222 (0.25%) covid-19 related deaths and 602 (0.7%) non-covid deaths. Among adults not on the register, 29 781 (0.2%) had a covid-19 related hospital admission; there were 13 737 (0.1%) covid-19 related deaths and 69 837 (0.5%) non-covid deaths. Wave 1 hazard ratios for adults on the learning disability register (adjusted for age, sex, ethnicity, and geographical location) were 5.3 (95% confidence interval 4.9 to 5.8) for covid-19 related hospital admission and 8.2 (7.2 to 9.4) for covid-19 related death. Wave 2 produced similar estimates. Associations were stronger among those classified as having severe to profound learning disability, and among those in residential care. For both waves, Down's syndrome and cerebral palsy were associated with increased hazards for both events; Down's syndrome to a greater extent. Hazard ratios for non-covid deaths followed similar patterns with weaker associations. Similar patterns of increased relative risk were seen for children, but covid-19 related deaths and hospital admissions were rare, reflecting low event rates among children. CONCLUSIONS: People with learning disability have markedly increased risks of hospital admission and death from covid-19, over and above the risks observed for non-covid causes of death. Prompt access to covid-19 testing and healthcare is warranted for this vulnerable group, and prioritisation for covid-19 vaccination and other targeted preventive measures should be considered.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Learning Disabilities/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Cerebral Palsy/epidemiology , Cohort Studies , Disabled Persons , Down Syndrome/epidemiology , England/epidemiology , Female , Humans , Male , Middle Aged , Young Adult
18.
Euro Surveill ; 26(11)2021 03.
Article in English | MEDLINE | ID: covidwho-1143384

ABSTRACT

The SARS-CoV-2 B.1.1.7 variant of concern (VOC) is increasing in prevalence across Europe. Accurate estimation of disease severity associated with this VOC is critical for pandemic planning. We found increased risk of death for VOC compared with non-VOC cases in England (hazard ratio: 1.67; 95% confidence interval: 1.34-2.09; p < 0.0001). Absolute risk of death by 28 days increased with age and comorbidities. This VOC has potential to spread faster with higher mortality than the pandemic to date.


Subject(s)
COVID-19/mortality , SARS-CoV-2/pathogenicity , Age Factors , Comorbidity , England/epidemiology , Humans
19.
Lancet Digit Health ; 3(4): e217-e230, 2021 04.
Article in English | MEDLINE | ID: covidwho-1087355

ABSTRACT

BACKGROUND: There are concerns that the response to the COVID-19 pandemic in the UK might have worsened physical and mental health, and reduced use of health services. However, the scale of the problem is unquantified, impeding development of effective mitigations. We aimed to ascertain what has happened to general practice contacts for acute physical and mental health outcomes during the pandemic. METHODS: Using de-identified electronic health records from the Clinical Research Practice Datalink (CPRD) Aurum (covering 13% of the UK population), between 2017 and 2020, we calculated weekly primary care contacts for selected acute physical and mental health conditions: anxiety, depression, self-harm (fatal and non-fatal), severe mental illness, eating disorder, obsessive-compulsive disorder, acute alcohol-related events, asthma exacerbation, chronic obstructive pulmonary disease exacerbation, acute cardiovascular events (cerebrovascular accident, heart failure, myocardial infarction, transient ischaemic attacks, unstable angina, and venous thromboembolism), and diabetic emergency. Primary care contacts included remote and face-to-face consultations, diagnoses from hospital discharge letters, and secondary care referrals, and conditions were identified through primary care records for diagnoses, symptoms, and prescribing. Our overall study population included individuals aged 11 years or older who had at least 1 year of registration with practices contributing to CPRD Aurum in the specified period, but denominator populations varied depending on the condition being analysed. We used an interrupted time-series analysis to formally quantify changes in conditions after the introduction of population-wide restrictions (defined as March 29, 2020) compared with the period before their introduction (defined as Jan 1, 2017 to March 7, 2020), with data excluded for an adjustment-to-restrictions period (March 8-28). FINDINGS: The overall population included 9 863 903 individuals on Jan 1, 2017, and increased to 10 226 939 by Jan 1, 2020. Primary care contacts for almost all conditions dropped considerably after the introduction of population-wide restrictions. The largest reductions were observed for contacts for diabetic emergencies (odds ratio 0·35 [95% CI 0·25-0·50]), depression (0·53 [0·52-0·53]), and self-harm (0·56 [0·54-0·58]). In the interrupted time-series analysis, with the exception of acute alcohol-related events (0·98 [0·89-1·10]), there was evidence of a reduction in contacts for all conditions (anxiety 0·67 [0·66-0·67], eating disorders 0·62 [0·59-0·66], obsessive-compulsive disorder [0·69 [0·64-0·74]], self-harm 0·56 [0·54-0·58], severe mental illness 0·80 [0·78-0·83], stroke 0·59 [0·56-0·62], transient ischaemic attack 0·63 [0·58-0·67], heart failure 0·62 [0·60-0·64], myocardial infarction 0·72 [0·68-0·77], unstable angina 0·72 [0·60-0·87], venous thromboembolism 0·94 [0·90-0·99], and asthma exacerbation 0·88 [0·86-0·90]). By July, 2020, except for unstable angina and acute alcohol-related events, contacts for all conditions had not recovered to pre-lockdown levels. INTERPRETATION: There were substantial reductions in primary care contacts for acute physical and mental conditions following the introduction of restrictions, with limited recovery by July, 2020. Further research is needed to ascertain whether these reductions reflect changes in disease frequency or missed opportunities for care. Maintaining health-care access should be a key priority in future public health planning, including further restrictions. The conditions we studied are sufficiently severe that any unmet need will have substantial ramifications for the people with the conditions as well as health-care provision. FUNDING: Wellcome Trust Senior Fellowship, Health Data Research UK.


Subject(s)
COVID-19 , Health Status , Mental Disorders/epidemiology , Patient Acceptance of Health Care/statistics & numerical data , Primary Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/psychology , Child , Electronic Health Records , Female , Hospitalization/trends , Humans , Interrupted Time Series Analysis , Male , Mental Health , Middle Aged , Primary Health Care/trends , United Kingdom/epidemiology , Young Adult
20.
PLoS One ; 15(7): e0234827, 2020.
Article in English | MEDLINE | ID: covidwho-827092

ABSTRACT

BACKGROUND: The most important factor influencing maternal vaccination uptake is healthcare professional (HCP) recommendation. However, where data are available, one-third of pregnant women remain unvaccinated despite receiving a recommendation. Therefore, it is essential to understand the significance of other factors and distinguish between vaccines administered routinely and during outbreaks. This is the first systematic review and meta-analysis (PROSPERO: CRD 42019118299) to examine the strength of the relationships between identified factors and maternal vaccination uptake. METHODS: We searched MEDLINE, Embase Classic & Embase, PsycINFO, CINAHL Plus, Web of Science, IBSS, LILACS, AfricaWideInfo, IMEMR, and Global Health databases for studies reporting factors that influence maternal vaccination. We used random-effects models to calculate pooled odds ratios (OR) of being vaccinated by vaccine type. FINDINGS: We screened 17,236 articles and identified 120 studies from 30 countries for inclusion. Of these, 49 studies were eligible for meta-analysis. The odds of receiving a pertussis or influenza vaccination were ten to twelve-times higher among pregnant women who received a recommendation from HCPs. During the 2009 influenza pandemic an HCP recommendation increased the odds of antenatal H1N1 vaccine uptake six times (OR 6.76, 95% CI 3.12-14.64, I2 = 92.00%). Believing there was potential for vaccine-induced harm had a negative influence on seasonal (OR 0.22, 95% CI 0.11-0.44 I2 = 84.00%) and pandemic influenza vaccine uptake (OR 0.16, 95% CI 0.09-0.29, I2 = 89.48%), reducing the odds of being vaccinated five-fold. Combined with our qualitative analysis the relationship between the belief in substantial disease risk and maternal seasonal and pandemic influenza vaccination uptake was limited. CONCLUSIONS: The effect of an HCP recommendation during an outbreak, whilst still powerful, may be muted by other factors. This requires further research, particularly when vaccines are novel. Public health campaigns which centre on the protectiveness and safety of a maternal vaccine rather than disease threat alone may prove beneficial.


Subject(s)
Patient Acceptance of Health Care/psychology , Pregnant Women/psychology , Vaccination/psychology , Adult , Decision Making , Female , Health Personnel/psychology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Odds Ratio , Pregnancy , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL