Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Preprint | EuropePMC | ID: ppcovidwho-297096

ABSTRACT

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced. Omicron contains a total of 30 substitutions plus deletions and an insertion in Spike, far more than any previously reported variant. The mutations include those previously identified by In-vitro evolution to contribute to high-affinity binding to ACE2, including mutations Q498R and N501Y critical in forming additional interactions in the interface. Together with increased charge complementarity between the RBD and ACE2, these substantially increase affinity and potentially virus transmissibility through increased syncytia formation. Further mutations promote immune evasion. We have studied the binding of a large panel of potent monoclonal antibodies generated from early pandemic or Beta infected cases. Mutations in Omicron will likely compromise the binding of many of these and additionally, the binding of antibodies under commercial development, however residual binding should provide protection from severe disease.

2.
Front Immunol ; 12: 748291, 2021.
Article in English | MEDLINE | ID: covidwho-1555236

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.

3.
Preprint in English | Other preprints | ID: ppcovidwho-294401

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD, and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients;b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study, was to identify biomarkers of humoral immunity that could be used as candidate CoP in internationally accepted unitage. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (INU) for virus neutralisation assays or International Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays;a lateral flow test for detection of SARS-CoV-2-specific IgG / IgM;a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins);a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG;a pseudotyped microneutralisation test (pMN) and electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD / S binding assays. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.

4.
Preprint in English | Other preprints | ID: ppcovidwho-294368

ABSTRACT

Background The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Methods Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Findings Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold. Interpretation Expressing our data in IU/ml, we provide a benchmark pre-vaccine standardised dataset that compares disease severity with neutralising antibody titres. Our data may now be compared across multiple laboratories. The continued use and aggregation of standardised data will eventually assist in defining correlates of protection. Funding UKRI and NIHR;grant number G107217 Research in context Evidence before this study During the first wave outbreak, much focus was placed on the role of neutralising antibodies and titres generated upon infection to ancestral SARS-CoV-2. Due to the large amounts of different assays used to elucidate the antibody-mediated immunity and laboratory to laboratory, large amounts of invaluable data could not be directly compared in order to define a correlate of protection, due to variability in the results. The WHO International Standard for anti-SARS-CoV-2 Immunoglobulin sera was made in order to standardise future data so that comparisons may take place. Added value of this study Our study compares the neutralisation capacity of sera from patients and healthcare workers (HCWs) from the ancestral strain of SARS-CoV-2 against new variants, including the current variants of concern in circulation. We also provide data in International Units per mL, a standardised unitage, for infected individuals that have a clinical severity score, allowing us to assess levels of neutralising antibodies across different severities of COVID-19 disease. By providing a method to calibrate most of the variants of concern so that the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin reagent could be used to standardise our results, therefore making them comparable to other laboratories who also standardised their data in an identical manner. Implications of all the available evidence Continual use and accumulation of standardised data would eventually lead to defining the correlates of protection against SARS-CoV-2. This could help to inform medical staff to identify which individuals would be a greater risk of a potential reinfection to SARS-CoV-2.

5.
Cell Host Microbe ; 30(1): 53-68.e12, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1536483

ABSTRACT

Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta-infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor-binding domain (RBD). Two of these RBD-binding mAbs recognize a neutralizing epitope conserved between SARS-CoV-1 and -2, while 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y, including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.

6.
Front Immunol ; 12: 772239, 2021.
Article in English | MEDLINE | ID: covidwho-1528825

ABSTRACT

This contribution explores in a new statistical perspective the antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 141 coronavirus disease 2019 (COVID-19) patients exhibiting a broad range of clinical manifestations. This cohort accurately reflects the characteristics of the first wave of the SARS-CoV-2 pandemic in Italy. We determined the IgM, IgA, and IgG levels towards SARS-CoV-2 S1, S2, and NP antigens, evaluating their neutralizing activity and relationship with clinical signatures. Moreover, we longitudinally followed 72 patients up to 9 months postsymptoms onset to study the persistence of the levels of antibodies. Our results showed that the majority of COVID-19 patients developed an early virus-specific antibody response. The magnitude and the neutralizing properties of the response were heterogeneous regardless of the severity of the disease. Antibody levels dropped over time, even though spike reactive IgG and IgA were still detectable up to 9 months. Early baseline antibody levels were key drivers of the subsequent antibody production and the long-lasting protection against SARS-CoV-2. Importantly, we identified anti-S1 IgA as a good surrogate marker to predict the clinical course of COVID-19. Characterizing the antibody response after SARS-CoV-2 infection is relevant for the early clinical management of patients as soon as they are diagnosed and for implementing the current vaccination strategies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin A/blood , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Female , HEK293 Cells , Hospitalization , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Young Adult
7.
Bio Protoc ; 11(21): e4236, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1527087

ABSTRACT

This protocol details a rapid and reliable method for the production and titration of high-titre viral pseudotype particles with the SARS-CoV-2 spike protein (and D614G or other variants of concern, VOC) on a lentiviral vector core, and use for neutralisation assays in target cells expressing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). It additionally provides detailed instructions on substituting in new spike variants via gene cloning, lyophilisation and storage/shipping considerations for wide deployment potential. Results obtained with this protocol show that SARS-CoV-2 pseudotypes can be produced at equivalent titres to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudotypes, neutralised by human convalescent plasma and monoclonal antibodies, and stored at a range of laboratory temperatures and lyophilised for distribution and subsequent application.

8.
Preprint in English | SSRN | ID: ppcovidwho-292038

ABSTRACT

Background: IgG antibodies specific for the SARS-CoV-2 Spike protein are under intensive investigation for the urgent need to identify a correlate of protective immunity in individuals vaccinated with licensed and candidate COVID-19 vaccines. Limited data are available on vaccine-elicited IgM antibodies and their potential implication in immunity to SARS-CoV-2. Methods: We performed a longitudinal study to quantify IgG and IgM antibodies specific for the SARS-CoV-2 spike protein (IgG-S and IgM-S) in 1873 health care worker (HCW) recipients of the BNT162b2 (Comirnaty) vaccine. Samples were collected before administration (T0), at the second dose (T1) and three weeks after the second dose (T2). The cohort included 1584 immunologically naïve to SARS-CoV-2 (IN) and 289 had a history of previous infection (PI). Findings: In IN we identified three patterns of responses: (a) IgG positive/IgM negative (36.1%), (b) coordinated IgM-S/IgG-S responses appearing three weeks after the first dose (37.4%) and (c) delayed IgM appearing after IgG (26.3%). Coordinated IgM-S/IgG-S responses were associated with higher IgG titers. Of the 289 PI vaccinees, 64.5% were IgM-S positive before vaccination, whereas 32% and 3.5% developed IgM-S after the first and second vaccine dose respectively. IgM-S positive sera had higher pseudovirus neutralization titers compared to the IgM-S negative. Similar results were observed in individuals who received either Moderna or Astrazeneca. Interpretation: Coordinated expression of IgG-S and IgM-S after vaccination was associated with a significantly more efficient response in both antibody titers and virus-neutralizing activity, representing a potential correlate of protection. Instead, the unconventional IgG-S positive/IgM-S negative responses may be suggestive of a recruitment of cross coronaviruses immunity by vaccination, warranting further investigation. Funding Information: This work was supported by the Italian Ministry of Health under “Fondi Ricerca Corrente”- L1P5 and “Progetto Ricerca Finalizzata COVID-2020-12371675” to IRCCS Sacro Cuore Don Calabria Hospital, by FUR 2020 Department of Excellence 2018-2022, MIUR, Italy and by The Brain Research Foundation Verona.

9.
J Infect Dis ; 224(8): 1305-1315, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1493821

ABSTRACT

BACKGROUND: A notable feature of coronavirus disease 2019 (COVID-19) is that children are less susceptible to severe disease. Children are known to experience more infections with endemic human coronaviruses (HCoVs) compared to adults. Little is known whether HCoV infections lead to cross-reactive anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. METHODS: We investigated the presence of cross-reactive anti-SARS-CoV-2 IgG antibodies to spike 1 (S1), S1-receptor-binding domain (S1-RBD), and nucleocapsid protein (NP) by enzyme-linked immunosorbent assays, and neutralizing activity by a SARS-CoV-2 pseudotyped virus neutralization assay, in prepandemic sera collected from children (n = 50) and adults (n = 45), and compared with serum samples from convalescent COVID-19 patients (n = 16). RESULTS: A significant proportion of children (up to 40%) had detectable cross-reactive antibodies to SARS-CoV-2 S1, S1-RBD, and NP antigens, and the anti-S1 and anti-S1-RBD antibody levels correlated with anti-HCoV-HKU1 and anti-HCoV-OC43 S1 antibody titers in prepandemic samples (P < .001). There were marked increases of anti-HCoV-HKU1 and - OC43 S1 (but not anti-NL63 and -229E S1-RBD) antibody titers in serum samples from convalescent COVID-19 patients (P < .001), indicating an activation of cross-reactive immunological memory to ß-coronavirus spike. CONCLUSIONS: We demonstrated cross-reactive anti-SARS-CoV-2 antibodies in prepandemic serum samples from children and young adults. Promoting this cross-reactive immunity and memory response derived from common HCoV may be an effective strategy against SARS-COV-2 and future novel coronaviruses.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Child , Child, Preschool , Convalescence , Coronavirus 229E, Human/immunology , Coronavirus Envelope Proteins/immunology , Coronavirus OC43, Human/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Immunologic Memory , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Young Adult
10.
Nature ; 592(7853): 277-282, 2021 04.
Article in English | MEDLINE | ID: covidwho-1387425

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Subject(s)
COVID-19/drug therapy , COVID-19/therapy , COVID-19/virology , Evolution, Molecular , Mutagenesis/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Chronic Disease , Genome, Viral/drug effects , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Immune Evasion/drug effects , Immune Evasion/genetics , Immune Evasion/immunology , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunization, Passive , Male , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Mutation , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Viral Load/drug effects , Virus Shedding
11.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348697

ABSTRACT

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/physiology , Cross Reactions , Humans , Lentivirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Neutralization Tests , Plasmids , SARS-CoV-2/physiology , Transfection , Virus Internalization
13.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1272328

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/chemistry , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Crystallography, X-Ray , Humans , Immunization, Passive , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
14.
Viruses ; 13(4)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1194712

ABSTRACT

SARS-CoV-2 virus was first detected in late 2019 and circulated globally, causing COVID-19, which is characterised by sub-clinical to severe disease in humans. Here, we investigate the serological antibody responses to SARS-CoV-2 infection during acute and convalescent infection using a cohort of (i) COVID-19 patients admitted to hospital, (ii) healthy individuals who had experienced 'COVID-19 like-illness', and (iii) a cohort of healthy individuals prior to the emergence of SARS-CoV-2. We compare SARS-CoV-2 specific antibody detection rates from four different serological methods, virus neutralisation test (VNT), ID Screen® SARS-CoV-2-N IgG ELISA, Whole Antigen ELISA, and lentivirus-based SARS-CoV-2 pseudotype virus neutralisation tests (pVNT). All methods were able to detect prior infection with COVID-19, albeit with different relative sensitivities. The VNT and SARS-CoV-2-N ELISA methods showed a strong correlation yet provided increased detection rates when used in combination. A pVNT correlated strongly with SARS-CoV-2 VNT and was able to effectively discriminate SARS-CoV-2 antibody positive and negative serum with the same efficiency as the VNT. Moreover, the pVNT was performed with the same level of discrimination across multiple separate institutions. Therefore, the pVNT is a sensitive, specific, and reproducible lower biosafety level alternative to VNT for detecting SARS-CoV-2 antibodies for diagnostic and research applications. Our data illustrate the potential utility of applying VNT or pVNT and ELISA antibody tests in parallel to enhance the sensitivity of exposure to infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lentivirus/genetics , Male , Middle Aged , Neutralization Tests , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Oxf Open Immunol ; 2(1): iqab005, 2021.
Article in English | MEDLINE | ID: covidwho-1142698
16.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-1127162

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage
17.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1095899

ABSTRACT

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , B-Lymphocytes/immunology , COVID-19 , Convalescence , 3T3 Cells , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , B-Lymphocytes/cytology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , Chlorocebus aethiops , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/immunology , Male , Mice , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
18.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1086819

ABSTRACT

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Binding Sites, Antibody , CHO Cells , Chlorocebus aethiops , Cricetulus , Epitopes , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/immunology , Vero Cells
19.
Sci Immunol ; 5(54)2020 12 23.
Article in English | MEDLINE | ID: covidwho-999191

ABSTRACT

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Asymptomatic Infections , COVID-19/immunology , T-Lymphocytes/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Cross-Sectional Studies , Humans , SARS-CoV-2/immunology
20.
Transfus Med ; 31(3): 167-175, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-979626

ABSTRACT

INTRODUCTION: The lack of approved specific therapeutic agents to treat coronavirus disease (COVID-19) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to the rapid implementation of convalescent plasma therapy (CPT) trials in many countries, including the United Kingdom. Effective CPT is likely to require high titres of neutralising antibody (nAb) in convalescent donations. Understanding the relationship between functional neutralising antibodies and antibody levels to specific SARS-CoV-2 proteins in scalable assays will be crucial for the success of a large-scale collection. We assessed whether neutralising antibody titres correlated with reactivity in a range of enzyme-linked immunosorbent assays (ELISA) targeting the spike (S) protein, the main target for human immune response. METHODS: Blood samples were collected from 52 individuals with a previous laboratory-confirmed SARS-CoV-2 infection. These were assayed for SARS-CoV-2 nAbs by microneutralisation and pseudo-type assays and for antibodies by four different ELISAs. Receiver operating characteristic (ROC) analysis was used to further identify sensitivity and specificity of selected assays to identify samples containing high nAb levels. RESULTS: All samples contained SARS-CoV-2 antibodies, whereas neutralising antibody titres of greater than 1:20 were detected in 43 samples (83% of those tested) and >1:100 in 22 samples (42%). The best correlations were observed with EUROimmun immunoglobulin G (IgG) reactivity (Spearman Rho correlation coefficient 0.88; p < 0.001). Based on ROC analysis, EUROimmun would detect 60% of samples with titres of >1:100 with 100% specificity using a reactivity index of 9.1 (13/22). DISCUSSION: Robust associations between nAb titres and reactivity in several ELISA-based antibody tests demonstrate their possible utility for scaled-up production of convalescent plasma containing potentially therapeutic levels of anti-SARS-CoV-2 nAbs.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/therapy , SARS-CoV-2/immunology , Antibodies, Viral/blood , Blood Donors , COVID-19/diagnosis , COVID-19 Testing , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunization, Passive/methods , Male , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...