Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Acta Haematol ; 145(3): 282-296, 2022.
Article in English | MEDLINE | ID: covidwho-1832782

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a pandemic at the end of 2019 and continues to exert an unfavorable worldwide health impact on a large proportion of the population. A remarkable feature of COVID-19 is the precipitation of a hypercoagulable state, mainly in severe cases, leading to micro- and macrothrombosis, respiratory failure, and death. Despite the implementation of various therapeutic regimes, including anticoagulants, a large number of patients suffer from such serious complications. This review aims to describe the current knowledge on the pathophysiology of the coagulation mechanism in COVID-19. We describe the interplay between three important mediators of the disease and how this may lead to a hyperinflammatory and prothrombotic state that affects outcome, namely, the endothelium, the immune system, and the coagulation system. In line with the hypercoagulability state during COVID-19, we further review on the rare but severe vaccine-induced thrombotic thrombocytopenia. We also summarize and comment on available anticoagulant treatment options and include suggestions for some future treatment considerations for COVID-19 anticoagulation therapy.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Thrombophilia , Anticoagulants/therapeutic use , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/therapy , COVID-19/complications , Humans , Pandemics , SARS-CoV-2 , Thrombophilia/drug therapy , Thrombophilia/etiology
2.
Diagnostics (Basel) ; 12(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1736850

ABSTRACT

Hemostasis is a finely tuned process of which dysregulation can lead either to bleeding or thrombotic complications. The latter is often caused by the hypercoagulable state as it is also seen in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, i.e., in COVID-19 patients. COVID-19 patients requiring hospitalization often suffer from thrombotic events that could not be predicted using routine coagulation assays. Recently, several studies have reported ROtational ThromboElastoMetry (ROTEM) as a promising tool to predict outcomes in COVID-19 patients. In this review we give an overview of ROTEM with a particular focus on the interpretation of the symmetrical clot formation curve in relation to coagulopathy in COVID-19 patients. Furthermore, we have introduced new parameters that might help to better distinguish between COVID-19 patients and outcomes.

4.
Artif Organs ; 46(5): 932-952, 2022 May.
Article in English | MEDLINE | ID: covidwho-1612843

ABSTRACT

BACKGROUND: During extracorporeal life support (ECLS), bleeding is one of the most frequent complications, associated with high morbidity and increased mortality, despite continuous improvements in devices and patient care. Risk factors for bleeding complications in veno-venous (V-V) ECLS applied for respiratory support have been poorly investigated. We aim to develop and internally validate a prediction model to calculate the risk for bleeding complications in adult patients receiving V-V ECLS support. METHODS: Data from adult patients reported to the extracorporeal life support organization (ELSO) registry between the years 2010 and 2020 were analyzed. The primary outcome was bleeding complications recorded during V-V ECLS. Multivariable logistic regression with backward stepwise elimination was used to develop the predictive model. The performance of the model was tested by discriminative ability and calibration with receiver operating characteristic curves and visual inspection of the calibration plot. RESULTS: In total, 18 658 adult patients were included, of which 3 933 (21.1%) developed bleeding complications. The prediction model showed a prediction of bleeding complications with an AUC of 0.63. Pre-ECLS arrest, surgical cannulation, lactate, pO2 , HCO3 , ventilation rate, mean airway pressure, pre-ECLS cardiopulmonary bypass or renal replacement therapy, pre-ECLS surgical interventions, and different types of diagnosis were included in the prediction model. CONCLUSIONS: The model is based on the largest cohort of V-V ECLS patients and reveals the most favorable predictive value addressing bleeding events given the predictors that are feasible and when compared to the current literature. This model will help identify patients at risk of bleeding complications, and decision making in terms of anticoagulation and hemostatic management.


Subject(s)
Extracorporeal Membrane Oxygenation , Adult , Cohort Studies , Extracorporeal Membrane Oxygenation/adverse effects , Humans , Logistic Models , Registries , Retrospective Studies
5.
Res Pract Thromb Haemost ; 5(8): e12630, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1588882

ABSTRACT

BACKGROUND: Vaccination is the leading approach in combatting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. ChAdOx1 nCoV-19 vaccination (ChAdOx1) has been linked to a higher frequency of rare thrombosis and thromboembolism. This study aimed to explore markers related to the blood coagulation system activation and inflammation, before and after ChAdOx1 vaccination. PATIENTS AND METHODS: An observational cohort study including 40 health care workers. Whole blood samples were collected before, and either 1 or 2 days after vaccination. Activated coagulation factors in complex with their natural inhibitors were determined by custom ELISAs, including thrombin:antithrombin (T:AT), kallikrein:C1-esterase-inhibitor (PKa:C1Inh), factor(F)IXa:AT, FXa:AT, FXIaAT, FXIa:alpha-1-antitrypsin (α1AT), FXIa:C1inh, and FVIIa:AT. Plasma concentrations of interleukin (IL)-6 and IL-18 were quantified via ELISA. Analyses were performed using Wilcoxon signed-rank test. RESULTS: Levels of FVIIa:AT decreased with a median (IQR) of 707 (549-1028) pg/ml versus 598 (471-996) pg/ml, p = 0.01; and levels of IL-6 increased, 4.0 (1.9-6.8) pg/ml versus 6.9 (3.6-12.2) pg/ml, p = 0.02, after vaccination. No changes were observed in T:AT, PKa:C1Inh, FIXa:AT, FXa:AT, FXIaAT, FXIa:α1AT, FXIa:C1inh, and IL-18. CONCLUSION: ChAdOx1 leads to an inflammatory response with increased levels of IL-6. We did not observe activation of the blood coagulation system 1-2 days following vaccination.

6.
Cells ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: covidwho-1542432

ABSTRACT

Autoimmune disorders are often associated with low platelet count or thrombocytopenia. In immune-induced thrombocytopenia (IIT), a common mechanism is increased platelet activity, which can have an increased risk of thrombosis. In addition, or alternatively, auto-antibodies suppress platelet formation or augment platelet clearance. Effects of the auto-antibodies are linked to the unique structural and functional characteristics of platelets. Conversely, prior platelet activation may contribute to the innate and adaptive immune responses. Extensive interplay between platelets, coagulation and complement activation processes may aggravate the pathology. Here, we present an overview of the reported molecular causes and consequences of IIT in the most common forms of autoimmune disorders. These include idiopathic thrombocytopenic purpura (ITP), systemic lupus erythematosus (SLE), antiphospholipid syndrome (APS), drug-induced thrombocytopenia (DITP), heparin-induced thrombocytopenia (HIT), COVID-19 vaccine-induced thrombosis with thrombocytopenia (VITT), thrombotic thrombocytopenia purpura (TTP), and hemolysis, the elevated liver enzymes and low platelet (HELLP) syndrome. We focus on the platelet receptors that bind auto-antibodies, the immune complexes, damage-associated molecular patterns (DAMPs) and complement factors. In addition, we review how circulating platelets serve as a reservoir of immunomodulatory molecules. By this update on the molecular mechanisms and the roles of platelets in the pathogenesis of autoimmune diseases, we highlight platelet-based pathways that can predispose for thrombocytopenia and are linked thrombotic or bleeding events.


Subject(s)
Platelet Activation , Purpura, Thrombocytopenic, Idiopathic/blood , Animals , Humans , Models, Biological , Signal Transduction
8.
Res Pract Thromb Haemost ; 5(6): e12579, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1437084

ABSTRACT

BACKGROUND: The prothrombotic phenotype has been extensively described in patients with acute coronavirus disease 2019 (COVID-19). However, potential long-term hemostatic abnormalities are unknown. OBJECTIVE: To evaluate the changes in routine hemostasis laboratory parameters and tissue-type plasminogen activator (tPA) rotational thromboelastometry (ROTEM) 6 months after COVID-19 intensive care unit (ICU) discharge in patients with and without venous thromboembolism (VTE) during admission. METHODS: Patients with COVID-19 of the Maastricht Intensive Care COVID cohort with tPA ROTEM measurement at ICU and 6-month follow-up were included. TPA ROTEM is a whole blood viscoelastic assay that illustrates both clot development and fibrinolysis due to simultaneous addition of tissue factor and tPA. Analyzed ROTEM parameters include clotting time, maximum clot firmness (MCF), lysis onset time (LOT), and lysis time (LT). RESULTS: Twenty-two patients with COVID-19 were included and showed extensive hemostatic abnormalities before ICU discharge. TPA ROTEM MCF (75 mm [interquartile range, 68-78]-59 mm [49-63]; P ≤ .001), LOT (3690 seconds [2963-4418]-1786 seconds [1465-2650]; P ≤ .001), and LT (7200 seconds [6144-7200]-3138 seconds [2591-4389]; P ≤ .001) normalized 6 months after ICU discharge. Of note, eight and four patients still had elevated fibrinogen and D-dimer concentrations at follow-up, respectively. In general, no difference in median hemostasis parameters at 6-month follow-up was observed between patients with (n=14) and without (n=8) VTE, although fibrinogen appeared to be lower in the VTE group (VTE-, 4.3 g/L [3.7-4.7] vs VTE+, 3.4 g/L [3.2-4.2]; P = .05). CONCLUSIONS: Six months after COVID-19 ICU discharge, no persisting hypercoagulable or hypofibrinolytic profile was detected by tPA ROTEM. Nevertheless, increased D-dimer and fibrinogen concentrations persist up to 6 months in some patients, warranting further exploration of the role of hemostasis in long-term morbidity after hospital discharge.

9.
J Clin Med ; 10(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1376851

ABSTRACT

Platelets are critical elements in the blood stream, supporting hemostasis as well as performing even more complex tasks within networks of biological (immunity) and pathophysiological processes, such as cancer and ischemia/reperfusion injury [...].

11.
Thromb J ; 19(1): 35, 2021 May 31.
Article in English | MEDLINE | ID: covidwho-1249557

ABSTRACT

BACKGROUND: The incidence of pulmonary thromboembolism is high in SARS-CoV-2 patients admitted to the Intensive Care. Elevated biomarkers of coagulation (fibrinogen and D-dimer) and inflammation (c-reactive protein (CRP) and ferritin) are associated with poor outcome in SARS-CoV-2. Whether the time-course of fibrinogen, D-dimer, CRP and ferritin is associated with the occurrence of pulmonary thromboembolism in SARS-CoV-2 patients is unknown. We hypothesise that patients on mechanical ventilation with SARS-CoV-2 infection and clinical pulmonary thromboembolism have lower concentrations of fibrinogen and higher D-dimer, CRP, and ferritin concentrations over time compared to patients without a clinical pulmonary thromboembolism. METHODS: In a prospective study, fibrinogen, D-dimer, CRP and ferritin were measured daily. Clinical suspected pulmonary thromboembolism was either confirmed or excluded based on computed tomography pulmonary angiography (CTPA) or by transthoracic ultrasound (TTU) (i.e., right-sided cardiac thrombus). In addition, patients who received therapy with recombinant tissue plasminogen activator were included when clinical instability in suspected pulmonary thromboembolism did not allow CTPA. Serial data were analysed using a mixed-effects linear regression model, and models were adjusted for known risk factors (age, sex, APACHE-II score, body mass index), biomarkers of coagulation and inflammation, and anticoagulants. RESULTS: Thirty-one patients were considered to suffer from pulmonary thromboembolism ((positive CTPA (n = 27), TTU positive (n = 1), therapy with recombinant tissue plasminogen activator (n = 3)), and eight patients with negative CTPA were included. After adjustment for known risk factors and anticoagulants, patients with, compared to those without, clinical pulmonary thromboembolism had lower average fibrinogen concentration of - 0.9 g/L (95% CI: - 1.6 - - 0.1) and lower average ferritin concentration of - 1045 µg/L (95% CI: - 1983 - - 106) over time. D-dimer and CRP average concentration did not significantly differ, 561 µg/L (- 6212-7334) and 27 mg/L (- 32-86) respectively. Ferritin lost statistical significance, both in sensitivity analysis and after adjustment for fibrinogen and D-dimer. CONCLUSION: Lower average concentrations of fibrinogen over time were associated with the presence of clinical pulmonary thromboembolism in patients at the Intensive Care, whereas D-dimer, CRP and ferritin were not. Lower concentrations over time may indicate the consumption of fibrinogen related to thrombus formation in the pulmonary vessels.

12.
Front Cardiovasc Med ; 8: 637005, 2021.
Article in English | MEDLINE | ID: covidwho-1238864
13.
Front Cardiovasc Med ; 8: 654174, 2021.
Article in English | MEDLINE | ID: covidwho-1226974

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) patients often present with thromboembolic events. In COVID-19 patients, routine hemostatic assays cannot correctly identify patients at risk for thromboembolic events. Viscoelastic testing with rotational thromboelastometry (ROTEM) might improve the characterization of COVID-19-associated coagulopathy. Objective: To unravel underlying coagulopathy and fibrinolysis over time as measured by serial assessment heparin-independent (FIBTEM and EXTEM) and fibrinolysis illustrating (tissue plasminogen activator; tPA) ROTEM assays. Patients/Methods: Between April 23 and June 12, consecutive adult patients enrolled within the Maastricht Intensive Care COVID (MaastrICCht) cohort were included, and a comprehensive set of clinical, physiological, pharmaceutical, and laboratory variables were collected daily. Twice per week, EXTEM, FIBTEM, and tPA ROTEM were performed. Clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), lysis onset time (LOT), and lysis time (LT) were determined to assess clot development and breakdown and were compared to routine hemostatic assays. Results: In 36 patients, 96 EXTEM/FIBTEM and 87 tPA ROTEM tests were performed during a 6-week follow-up. CT prolongation was present in 54% of EXTEM measurements, which were not matched by prothrombin time (PT) in 37%. Respectively, 81 and 99% of all EXTEM and FIBTEM MCF values were above the reference range, and median MCF remained elevated during follow-up. The ROTEM fibrinolysis parameters remained prolonged with median LOT consequently >49 min and unmeasurable LT in 56% of measurements, suggesting a severe hypofibrinolytic phenotype. Conclusion: ROTEM tests in COVID-19 ICU patients show hypercoagulability and severe hypofibrinolysis persisting over at least 6 weeks.

14.
Res Pract Thromb Haemost ; 5(2): 278-290, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1120206

ABSTRACT

The incidence of venous thrombosis, mostly pulmonary embolism (PE), ranging from local immunothrombosis to central emboli, but also deep vein thrombosis (DVT) in people with coronavirus disease 2019 (COVID-19) is reported to be remarkably high. The relevance of better understanding, predicting, treating, and preventing COVID-19-associated venous thrombosis meets broad support, as can be concluded from the high number of research, review, and guideline papers that have been published on this topic. The Dutch COVID & Thrombosis Coalition (DCTC) is a multidisciplinary team involving a large number of Dutch experts in the broad area of venous thrombosis and hemostasis research, combined with experts on virology, critically ill patients, pulmonary diseases, and community medicine, across all university hospitals and many community hospitals in the Netherlands. Within the consortium, clinical data of at least 5000 admitted COVID-19-infected individuals are available, including substantial collections of biobanked materials in an estimated 3000 people. In addition to considerable experience in preclinical and clinical thrombosis research, the consortium embeds virology-hemostasis research models within unique biosafety facilities to address fundamental questions on the interaction of virus with epithelial and vascular cells, in relation to the coagulation and inflammatory system. The DCTC has initiated a comprehensive research program to answer many of the current questions on the pathophysiology and best anticoagulant treatment of COVID-19-associated thrombotic complications. The research program was funded by grants of the Netherlands Thrombosis Foundation and the Netherlands Organization for Health Research and Development. Here, we summarize the design and main aims of the research program.

15.
Thromb Res ; 201: 84-89, 2021 05.
Article in English | MEDLINE | ID: covidwho-1117704

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection is associated with a clear prothrombotic phenotype. Although the exact pathophysiological mechanisms are not yet fully understood, thrombosis is clearly a highly important in the prognosis and outcome of COVID-19. As such, there is a need for diagnostic analysis and quantification of the coagulation potential in these patients, both at diagnosis and follow-up. Global coagulation assays like thrombin generation (TG) and rotational thromboelastometry (ROTEM) might be suitable in estimating COVID-19 associated coagulopathy and thrombosis risk. Therefore, we aimed at validating both assays for samples with high levels of fibrinogen and in the presence of anticoagulant heparins, such as commonly observed for COVID-19 ICU patients. MATERIALS AND METHODS: Calibrated Automated Thrombography (CAT) was optimized to assess plasma thrombin generation in the presence of heparins. The final conditions with either 10 µg/mL Ellagic acid (EA) or PPP Reagent HIGH (high tissue factor; HPPH) were validated according to the EP5 protocol for within-run and between-run variability. Overall variability was well below 10%. To estimate the influences of heparins and high fibrinogen levels, CAT was performed on spiked plasma aliquots from 13 healthy volunteers. Comparable to the CAT method, tPA-ROTEM was used to validate the effect of high fibrinogen and heparins on clotting time, clot firmness and clot lysis parameters. RESULTS: Our adjusted COVID-19 assay showed a heparin dose dependent decrease in peak height and endogenous thrombin potential (ETP) for both EA and HPPH triggered variants. High fibrinogen did not alter the inhibitory effect of either LMWH or UFH, nor did it influence the peak height or ETP in any of the conditions. The tPA-ROTEM showed a significant prolongation in clotting time with the additions of heparin, which normalized with the addition of high fibrinogen. MCF was markedly increased in all hyperfibrinogenemic conditions. A trend towards increased lysis time and, thus, decreased fibrinolysis was observed. CONCLUSION: Thrombin generation and tPA-ROTEM protocols for measurements in the COVID-19 populations were adjusted and validated. The adjusted thrombin generation assay shows good sensitivity for measurements in heparin spiked plasma. High levels of fibrinogen did not alter the assay or the effectiveness of heparins as measured in this assay. t-PA ROTEM was effective in measurement of both high fibrinogen and heparins spiked samples and was sensitive to the expected relevant coagulant changes by these conditions. No clear fibrinolytic effect was observed in different conditions.


Subject(s)
COVID-19 , Thrombophilia , Blood Coagulation Tests , Heparin, Low-Molecular-Weight , Humans , RNA, Viral , SARS-CoV-2 , Thrombelastography , Thrombophilia/diagnosis
16.
TH Open ; 4(4): e365-e375, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-943995

ABSTRACT

Objective Severe cases of coronavirus disease 2019 (COVID-19) can require continuous renal replacement therapy (CRRT) and/or extracorporeal membrane oxygenation (ECMO). Unfractionated heparin (UFH) to prevent circuit clotting is mandatory but monitoring is complicated by (pseudo)-heparin resistance. In this observational study, we compared two different activated partial thromboplastin time (aPTT) assays and a chromogenic anti-Xa assay in COVID-19 patients on CRRT or ECMO in relation to their UFH dosages and acute phase reactants. Materials and Methods The aPTT (optical [aPTT-CS] and/or mechanical [aPTT-STA] clot detection methods were used), anti-Xa, factor VIII (FVIII), antithrombin III (ATIII), and fibrinogen were measured in 342 samples from 7 COVID-19 patients on CRRT or ECMO during their UFH treatment. Dosage of UFH was primarily based on the aPTT-CS with a heparin therapeutic range (HTR) of 50-80s. Associations between different variables were made using linear regression and Bland-Altman analysis. Results Dosage of UFH was above 35,000IU/24 hours in all patients. aPTT-CS and aPTT-STA were predominantly within the HTR. Anti-Xa was predominantly above the HTR (0.3-0.7 IU/mL) and ATIII concentration was >70% for all patients; mean FVIII and fibrinogen were 606% and 7.5 g/L, respectively. aPTT-CS correlated with aPTT-STA ( r 2 = 0.68) with a bias of 39.3%. Correlation between aPTT and anti-Xa was better for aPTT-CS (0.78 ≤ r 2 ≤ 0.94) than for aPTT-STA (0.34 ≤ r 2 ≤ 0.81). There was no general correlation between the aPTT-CS and ATIII, FVIII, fibrinogen, thrombocytes, C-reactive protein, or ferritin. Conclusion All included COVID-19 patients on CRRT or ECMO conformed to the definition of heparin resistance. A patient-specific association was found between aPTT and anti-Xa. This association could not be explained by FVIII or fibrinogen.

17.
Thromb Res ; 196: 486-490, 2020 12.
Article in English | MEDLINE | ID: covidwho-887135

ABSTRACT

BACKGROUND: The risk of pulmonary embolism (PE) in patients with Coronavirus Disease 2019 (COVID-19) is recognized. The prevalence of PE in patients with respiratory deterioration at the Emergency Department (ED), the regular ward, and the Intensive Care Unit (ICU) are not well-established. OBJECTIVES: We aimed to investigate how often PE was present in individuals with COVID-19 and respiratory deterioration in different settings, and whether or not disease severity as measured by CT-severity score (CTSS) was related to the occurrence of PE. PATIENTS/METHODS: Between April 6th and May 3rd, we enrolled 60 consecutive adult patients with confirmed COVID-19 from the ED, regular ward and ICU who met the pre-specified criteria for respiratory deterioration. RESULTS: A total of 24 (24/60: 40% (95% CI: 28-54%)) patients were diagnosed with PE, of whom 6 were in the ED (6/23: 26% (95% CI: 10-46%)), 8 in the regular ward (8/24: 33% (95% CI: 16-55%)), and 10 in the ICU (10/13: 77% (95% CI: 46-95%)). CTSS (per unit) was not associated with the occurrence of PE (age and sex-adjusted OR 1.06 (95%CI 0.98-1.15)). CONCLUSION: The number of PE diagnosis among patients with COVID-19 and respiratory deterioration was high; 26% in the ED, 33% in the regular ward and 77% in the ICU respectively. In our cohort CTSS was not associated with the occurrence of PE. Based on the high number of patients diagnosed with PE among those scanned we recommend a low threshold for performing computed tomography angiography in patients with COVID-19 and respiratory deterioration.


Subject(s)
COVID-19/epidemiology , Emergency Service, Hospital , Intensive Care Units , Pulmonary Embolism/epidemiology , Respiratory Insufficiency/epidemiology , Aged , Aged, 80 and over , COVID-19/diagnostic imaging , Computed Tomography Angiography , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Prevalence , Prognosis , Pulmonary Embolism/diagnostic imaging , Respiratory Insufficiency/diagnostic imaging , Risk Assessment , Risk Factors , Severity of Illness Index
19.
J Am Geriatr Soc ; 68(8): 1647-1652, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-633783

ABSTRACT

BACKGROUND/OBJECTIVES: Nursing home (NH) residents are a vulnerable population, susceptible to respiratory disease outbreaks such as coronavirus disease 2019 (COVID-19). Poor outcome in COVID-19 is at least partly attributed to hypercoagulability, resulting in a high incidence of thromboembolic complications. It is unknown whether commonly used antithrombotic therapies may protect the vulnerable NH population with COVID-19 against mortality. This study aimed to investigate whether the use of oral antithrombotic therapy (OAT) was associated with a lower mortality in NH residents with COVID-19. DESIGN: A retrospective case series. SETTING: Fourteen NH facilities from the NH organization Envida, Maastricht, the Netherlands PARTICIPANTS: A total of 101 NH residents with COVID-19 were enrolled. MEASUREMENTS: The primary outcome was all-cause mortality. The association between age, sex, comorbidity, OAT, and mortality was assessed using logistic regression analysis. RESULTS: Overall mortality was 47.5% in NH residents from 14 NH facilities. Age, comorbidity, and medication use were comparable among NH residents who survived and who died. OAT was associated with a lower mortality in NH residents with COVID-19 in the univariable analysis (odds ratio (OR) = 0.89; 95% confidence interval (CI) = 0.41-1.95). However, additional adjustments for sex, age, and comorbidity attenuated this difference. Mortality in males was higher compared with female residents (OR = 3.96; 95% CI = 1.62-9.65). Male residents who died were younger compared with female residents (82.2 (standard deviation (SD) = 6.3) vs 89.1 (SD = 6.8) years; P < .001). CONCLUSION: NH residents in the 14 facilities we studied were severely affected by the COVID-19 pandemic, with a mortality of 47.5%. Male NH residents with COVID-19 had worse outcomes than females. We did not find evidence for any protection against mortality by OAT, necessitating further research into strategies to mitigate poor outcome of COVID-19 in vulnerable NH populations. J Am Geriatr Soc 68:1647-1652, 2020.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Fibrinolytic Agents/therapeutic use , Pneumonia, Viral/mortality , Thromboembolism/mortality , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Female , Homes for the Aged , Humans , Incidence , Male , Netherlands/epidemiology , Nursing Homes , Odds Ratio , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Retrospective Studies , SARS-CoV-2 , Sex Factors , Thromboembolism/drug therapy , Thromboembolism/virology
SELECTION OF CITATIONS
SEARCH DETAIL