Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Influenza Other Respir Viruses ; 2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1621931

ABSTRACT

BACKGROUND: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. METHODS: We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing, and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. RESULTS: Among 1018 unvaccinated and 3531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19 and vaccinated participants during hours in the community. CONCLUSIONS: COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers.

2.
Clin Infect Dis ; 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1598841

ABSTRACT

BACKGROUND: Data on the development of neutralizing antibodies against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with messenger RNA (mRNA) COVID-19 vaccines are limited. METHODS: From a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August 2020 to March 2021 for SARS-CoV-2 infection by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum-neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t-tests and linear mixed effects models. RESULTS: Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a GMT of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT =4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine (GMT=2,309, 95%CI=1,825-2,919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose-2. CONCLUSIONS: A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS-CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product.

3.
JMIR Res Protoc ; 10(12): e31574, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1555360

ABSTRACT

BACKGROUND: Workers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. OBJECTIVE: The Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers. METHODS: The RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19-like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR-confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days. RESULTS: The study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites. CONCLUSIONS: Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/31574.

4.
MMWR Morb Mortal Wkly Rep ; 70(46): 1608-1612, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1524680

ABSTRACT

Population-based rates of infection with SARS-CoV-2 (the virus that causes COVID-19) and related health care utilization help determine estimates of COVID-19 vaccine effectiveness and averted illnesses, especially since the SARS-CoV-2 B.1.617.2 (Delta) variant began circulating in June 2021. Among members aged ≥12 years of a large integrated health care delivery system in Oregon and Washington, incidence of laboratory-confirmed SARS-CoV-2 infection, emergency department (ED) visits, and hospitalizations were calculated by COVID-19 vaccination status, vaccine product, age, race, and ethnicity. Infection after full vaccination was defined as a positive SARS-CoV-2 molecular test result ≥14 days after completion of an authorized COVID-19 vaccination series.* During the July-September 2021 surveillance period, SARS-CoV-2 infection occurred among 4,146 of 137,616 unvaccinated persons (30.1 per 1,000 persons) and 3,009 of 344,848 fully vaccinated persons (8.7 per 1,000). Incidence was higher among unvaccinated persons than among vaccinated persons across all demographic strata. Unvaccinated persons with SARS-CoV-2 infection were more than twice as likely to receive ED care (18.5%) or to be hospitalized (9.0%) than were vaccinated persons with COVID-19 (8.1% and 3.9%, respectively). The crude mortality rate was also higher among unvaccinated patients (0.43 per 1,000) than in fully vaccinated patients (0.06 per 1,000). These data support CDC recommendations for COVID-19 vaccination, including additional and booster doses, to protect individual persons and communities against COVID-19, including illness and hospitalization caused by the Delta variant (1).


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Child , Female , Humans , Incidence , Male , Middle Aged , Oregon/epidemiology , Vaccination/statistics & numerical data , Washington/epidemiology , Young Adult
5.
J Infect Dis ; 221(2): 183-190, 2020 01 02.
Article in English | MEDLINE | ID: covidwho-1452713

ABSTRACT

BACKGROUND: Severe influenza illness is presumed more common in adults with chronic medical conditions (CMCs), but evidence is sparse and often combined into broad CMC categories. METHODS: Residents (aged 18-80 years) of Central and South Auckland hospitalized for World Health Organization-defined severe acute respiratory illness (SARI) (2012-2015) underwent influenza virus polymerase chain reaction testing. The CMC statuses for Auckland residents were modeled using hospitalization International Classification of Diseases, Tenth Revision codes, pharmaceutical claims, and laboratory results. Population-level influenza rates in adults with congestive heart failure (CHF), coronary artery disease (CAD), cerebrovascular accidents (CVA), chronic obstructive pulmonary disease (COPD), asthma, diabetes mellitus (DM), and end-stage renal disease (ESRD) were calculated by Poisson regression stratified by age and adjusted for ethnicity. RESULTS: Among 891 276 adults, 2435 influenza-associated SARI hospitalizations occurred. Rates were significantly higher in those with CMCs compared with those without the respective CMC, except for older adults with DM or those aged <65 years with CVA. The largest effects occurred with CHF (incidence rate ratio [IRR] range, 4.84-13.4 across age strata), ESRD (IRR range, 3.30-9.02), CAD (IRR range, 2.77-10.7), and COPD (IRR range, 5.89-8.78) and tapered with age. CONCLUSIONS: Our findings support the increased risk of severe, laboratory-confirmed influenza disease among adults with specific CMCs compared with those without these conditions.


Subject(s)
Chronic Disease/epidemiology , Influenza, Human/epidemiology , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Case-Control Studies , Cross-Sectional Studies , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Influenza, Human/virology , Male , Middle Aged , New Zealand/epidemiology , Prospective Studies , Risk Assessment , Young Adult
7.
JMIR Res Protoc ; 10(12): e31574, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1480500

ABSTRACT

BACKGROUND: Workers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. OBJECTIVE: The Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers. METHODS: The RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19-like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR-confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days. RESULTS: The study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites. CONCLUSIONS: Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/31574.

8.
MMWR Morb Mortal Wkly Rep ; 70(37): 1291-1293, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1441399

ABSTRACT

Data on COVID-19 vaccine effectiveness (VE) since the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating strain in the United States are limited (1-3). CDC used the VISION Network* to examine medical encounters (32,867) from 187 hospitals and 221 emergency departments (EDs) and urgent care (UC) clinics across nine states during June-August 2021, beginning on the date the Delta variant accounted for >50% of sequenced isolates in each medical facility's state. VISION Network methods have been published (4).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2 , Adolescent , Adult , Aged , Ambulatory Care Facilities/statistics & numerical data , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Humans , Middle Aged , United States/epidemiology , Young Adult
9.
N Engl J Med ; 385(15): 1355-1371, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1397961

ABSTRACT

BACKGROUND: There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Patient Readmission/statistics & numerical data , United States/epidemiology
10.
JMIR Res Protoc ; 2021 May 26.
Article in English | MEDLINE | ID: covidwho-1295585

ABSTRACT

BACKGROUND: The Arizona Healthcare, Emergency Response, and Other Essential workers Study (AZ HEROES) aims to examine the epidemiology of SARS-CoV-2 infection and COVID-19 illness among adults with high occupational exposure risk. OBJECTIVE: Study objectives include estimating incidence of SARS-CoV-2 infection in essential workers by symptom presentation and demographic factors, determining independent effects of occupational and community exposures on incidence of SARS-CoV-2 infection, establishing molecular and immunologic characteristics of SARS-CoV-2 infection in essential workers, describing the duration and patterns of rRT-PCR-positivity, and examining post-vaccine immunologic response. METHODS: Eligible participants include Arizona residents aged 18-85 years who work at least 20 hours per week in an occupation involving regular direct contact (within three feet) with others. Recruitment goals are stratified by demographic characteristics (50% aged 40 or older, 50% women, and 50% Hispanic or American Indian), by occupation (40% healthcare personnel, 30% first responders, and 30% other essential workers), and by prior SARS-CoV-2 infection (with up to 50% seropositive at baseline). Information on sociodemographics, health and medical history, vaccination status, exposures to individuals with suspected or confirmed SARS-CoV-2 infection, use of personal protective equipment, and perceived risks are collected at enrollment and updated through quarterly surveys. Every week, participants complete active surveillance for COVID-19-like illness (CLI) and self-collect nasal swabs. Additional self-collected nasal swab and saliva specimens are collected in the event of CLI onset. Respiratory specimens are sent to Marshfield Laboratories and tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (rRT-PCR) assay. CLI symptoms and impact on work and productivity are followed through illness resolution. Serum specimens are collected every 3 months and additional sera are collected following incident rRT-PCR positivity and after each COVID-19 vaccine dose. Incidence of SARS-CoV-2 infections will be calculated by person-weeks at risk and compared by occupation and demographic characteristics and by seropositivity status and infection and vaccination history. RESULTS: The AZ HEROES study was funded by the Centers for Disease Control and Prevention. Enrollment began July 27, 2020 and as of May 1, 2021 a total of 3,165 participants have been enrolled in the study. CONCLUSIONS: AZ HEROES is unique in aiming to recruit a diverse sample of essential workers and prospectively following strata of SARS-CoV-2 seronegative and seropositive adults. Survey results combined with active surveillance data on exposure, CLI, weekly molecular diagnostic testing, and periodic serology will be used to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infection, assess the intensity and durability of immune responses to natural infection and COVID-19 vaccination, and contribute to the evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT: DERR1-10.2196/28925.

11.
N Engl J Med ; 385(4): 320-329, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1287848

ABSTRACT

BACKGROUND: Information is limited regarding the effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions. METHODS: We conducted a prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis. The formula for calculating vaccine effectiveness was 100% × (1 - hazard ratio for SARS-CoV-2 infection in vaccinated vs. unvaccinated participants), with adjustments for the propensity to be vaccinated, study site, occupation, and local viral circulation. RESULTS: SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded. Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination. Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants. In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7). CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. (Funded by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Viral Load , Adolescent , Adult , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , Carrier State/diagnosis , Carrier State/prevention & control , Emergency Responders , Female , Health Personnel , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , SARS-CoV-2/isolation & purification , Treatment Outcome , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 70(13): 495-500, 2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1168280

ABSTRACT

Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.† Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.§ In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Emergency Responders , Health Personnel , Occupational Diseases/prevention & control , Occupations/classification , Adolescent , Adult , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , Emergency Responders/statistics & numerical data , Female , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Prospective Studies , United States/epidemiology , Vaccines, Synthetic/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...