Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Relph, Katharine A.; Russell, Clark D.; Fairfield, Cameron J.; Turtle, Lance, de Silva, Thushan I.; Siggins, Matthew K.; Drake, Thomas M.; Thwaites, Ryan S.; Abrams, Simon, Moore, Shona C.; Hardwick, Hayley E.; Oosthuyzen, Wilna, Harrison, Ewen M.; Docherty, Annemarie B.; Openshaw, Peter J. M.; Baillie, J. Kenneth, Semple, Malcolm G.; Ho, Antonia, Baillie, J. Kenneth, Semple, Malcolm G.; Openshaw, Peter J. M.; Carson, Gail, Alex, Beatrice, Bach, Benjamin, Barclay, Wendy S.; Bogaert, Debby, Chand, Meera, Cooke, Graham S.; Docherty, Annemarie B.; Dunning, Jake, Filipe, Ana da Silva, Fletcher, Tom, Green, Christopher A.; Harrison, Ewen M.; Hiscox, Julian A.; Ho, Antonia Ying Wai, Horby, Peter W.; Ijaz, Samreen, Khoo, Saye, Klenerman, Paul, Law, Andrew, Lim, Wei Shen, Mentzer, Alexander J.; Merson, Laura, Meynert, Alison M.; Noursadeghi, Mahdad, Moore, Shona C.; Palmarini, Massimo, Paxton, William A.; Pollakis, Georgios, Price, Nicholas, Rambaut, Andrew, Robertson, David L.; Russell, Clark D.; Sancho-Shimizu, Vanessa, Scott, Janet T.; de Silva, Thushan, Sigfrid, Louise, Solomon, Tom, Sriskandan, Shiranee, Stuart, David, Summers, Charlotte, Tedder, Richard S.; Thomson, Emma C.; Roger Thompson, A. A.; Thwaites, Ryan S.; Turtle, Lance C. W.; Gupta, Rishi K.; Zambon, Maria, Hardwick, Hayley, Donohue, Chloe, Lyons, Ruth, Griffiths, Fiona, Oosthuyzen, Wilna, Norman, Lisa, Pius, Riinu, Drake, Thomas M.; Fairfield, Cameron J.; Knight, Stephen R.; McLean, Kenneth A.; Murphy, Derek, Shaw, Catherine A.; Dalton, Jo, Girvan, Michelle, Saviciute, Egle, Roberts, Stephanie, Harrison, Janet, Marsh, Laura, Connor, Marie, Halpin, Sophie, Jackson, Clare, Gamble, Carrol, Leeming, Gary, Law, Andrew, Wham, Murray, Clohisey, Sara, Hendry, Ross, Scott-Brown, James, Greenhalf, William, Shaw, Victoria, McDonald, Sara, Keating, Seán, Ahmed, Katie A.; Armstrong, Jane A.; Ashworth, Milton, Asiimwe, Innocent G.; Bakshi, Siddharth, Barlow, Samantha L.; Booth, Laura, Brennan, Benjamin, Bullock, Katie, Catterall, Benjamin W. A.; Clark, Jordan J.; Clarke, Emily A.; Cole, Sarah, Cooper, Louise, Cox, Helen, Davis, Christopher, Dincarslan, Oslem, Dunn, Chris, Dyer, Philip, Elliott, Angela, Evans, Anthony, Finch, Lorna, Fisher, Lewis W. S.; Foster, Terry, Garcia-Dorival, Isabel, Greenhalf, William, Gunning, Philip, Hartley, Catherine, Jensen, Rebecca L.; Jones, Christopher B.; Jones, Trevor R.; Khandaker, Shadia, King, Katharine, Kiy, Robyn T.; Koukorava, Chrysa, Lake, Annette, Lant, Suzannah, Latawiec, Diane, Lavelle-Langham, Lara, Lefteri, Daniella, Lett, Lauren, Livoti, Lucia A.; Mancini, Maria, McDonald, Sarah, McEvoy, Laurence, McLauchlan, John, Metelmann, Soeren, Miah, Nahida S.; Middleton, Joanna, Mitchell, Joyce, Moore, Shona C.; Murphy, Ellen G.; Penrice-Randal, Rebekah, Pilgrim, Jack, Prince, Tessa, Reynolds, Will, Matthew Ridley, P.; Sales, Debby, Shaw, Victoria E.; Shears, Rebecca K.; Small, Benjamin, Subramaniam, Krishanthi S.; Szemiel, Agnieska, Taggart, Aislynn, Tanianis-Hughes, Jolanta, Thomas, Jordan, Trochu, Erwan, van Tonder, Libby, Wilcock, Eve, Eunice Zhang, J.; Flaherty, Lisa, Maziere, Nicole, Cass, Emily, Doce Carracedo, Alejandra, Carlucci, Nicola, Holmes, Anthony, Massey, Hannah, Murphy, Lee, Wrobel, Nicola, McCafferty, Sarah, Morrice, Kirstie, MacLean, Alan, Adeniji, Kayode, Agranoff, Daniel, Agwuh, Ken, Ail, Dhiraj, Aldera, Erin L.; Alegria, Ana, Angus, Brian, Ashish, Abdul, Atkinson, Dougal, Bari, Shahedal, Barlow, Gavin, Barnass, Stella, Barrett, Nicholas, Bassford, Christopher, Basude, Sneha, Baxter, David, Beadsworth, Michael, Bernatoniene, Jolanta, Berridge, John, Best, Nicola, Bothma, Pieter, Chadwick, David, Brittain-Long, Robin, Bulteel, Naomi, Burden, Tom, Burtenshaw, Andrew, Caruth, Vikki, Chadwick, David, Chambler, Duncan, Chee, Nigel, Child, Jenny, Chukkambotla, Srikanth, Clark, Tom, Collini, Paul, Cosgrove, Catherine, Cupitt, Jason, Cutino-Moguel, Maria-Teresa, Dark, Paul, Dawson, Chris, Dervisevic, Samir, Donnison, Phil, Douthwaite, Sam, DuRand, Ingrid, Dushianthan, Ahilanadan, Dyer, Tristan, Evans, Cariad, Eziefula, Chi, Fegan, Christopher, Finn, Adam, Fullerton, Duncan, Garg, Sanjeev, Garg, Sanjeev, Garg, Atul, Gkrania-Klotsas, Effrossyni, Godden, Jo, Goldsmith, Arthur, Graham, Clive, Hardy, Elaine, Hartshorn, Stuart, Harvey, Daniel, Havalda, Peter, Hawcutt, Daniel B.; Hobrok, Maria, Hodgson, Luke, Hormis, Anil, Jacobs, Michael, Jain, Susan, Jennings, Paul, Kaliappan, Agilan, Kasipandian, Vidya, Kegg, Stephen, Kelsey, Michael, Kendall, Jason, Kerrison, Caroline, Kerslake, Ian, Koch, Oliver, Koduri, Gouri, Koshy, George, Laha, Shondipon, Laird, Steven, Larkin, Susan, Leiner, Tamas, Lillie, Patrick, Limb, James, Linnett, Vanessa, Little, Jeff, Lyttle, Mark, MacMahon, Michael, MacNaughton, Emily, Mankregod, Ravish, Masson, Huw, Matovu, Elijah, McCullough, Katherine, McEwen, Ruth, Meda, Manjula, Mills, Gary, Minton, Jane, Mirfenderesky, Mariyam, Mohandas, Kavya, Mok, Quen, Moon, James, Moore, Elinoor, Morgan, Patrick, Morris, Craig, Mortimore, Katherine, Moses, Samuel, Mpenge, Mbiye, Mulla, Rohinton, Murphy, Michael, Nagel, Megan, Nagarajan, Thapas, Nelson, Mark, O’Shea, Matthew K.; Otahal, Igor, Ostermann, Marlies, Pais, Mark, Panchatsharam, Selva, Papakonstantinou, Danai, Paraiso, Hassan, Patel, Brij, Pattison, Natalie, Pepperell, Justin, Peters, Mark, Phull, Mandeep, Pintus, Stefania, Pooni, Jagtur Singh, Post, Frank, Price, David, Prout, Rachel, Rae, Nikolas, Reschreiter, Henrik, Reynolds, Tim, Richardson, Neil, Roberts, Mark, Roberts, Devender, Rose, Alistair, Rousseau, Guy, Ryan, Brendan, Saluja, Taranprit, Shah, Aarti, Shanmuga, Prad, Sharma, Anil, Shawcross, Anna, Sizer, Jeremy, Shankar-Hari, Manu, Smith, Richard, Snelson, Catherine, Spittle, Nick, Staines, Nikki, Stambach, Tom, Stewart, Richard, Subudhi, Pradeep, Szakmany, Tamas, Tatham, Kate, Thomas, Jo, Thompson, Chris, Thompson, Robert, Tridente, Ascanio, Tupper-Carey, Darell, Twagira, Mary, Ustianowski, Andrew, Vallotton, Nick, Vincent-Smith, Lisa, Visuvanathan, Shico, Vuylsteke, Alan, Waddy, Sam, Wake, Rachel, Walden, Andrew, Welters, Ingeborg, Whitehouse, Tony, Whittaker, Paul, Whittington, Ashley, Papineni, Padmasayee, Wijesinghe, Meme, Williams, Martin, Wilson, Lawrence, Cole, Sarah, Winchester, Stephen, Wiselka, Martin, Wolverson, Adam, Wootton, Daniel G.; Workman, Andrew, Yates, Bryan, Young, Peter.
Open Forum Infectious Diseases ; 9(5), 2022.
Article in English | PMC | ID: covidwho-1821760

ABSTRACT

Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).

2.
J Infect ; 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1778315

ABSTRACT

OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Among the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAd, schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10085) following ChAd/ChAd/BNT). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 µg) or BNT (30 µg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 µg) versus BNT (30 µg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentration at D84 following BNT/BNT initial doses were higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses.

3.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-332455

ABSTRACT

Background: Many high-income countries have deployed third “booster” doses of COVID-19 vaccines to populations and some countries have started offering fourth doses. Methods: The COV-BOOST trial is a multicentre, randomised, controlled, phase II trial of seven COVID-19 vaccines as third dose boosters. The current study invited participants who received BNT162b2 (BNT) as third dose in COV-BOOST to be randomised to receive a fourth dose of BNT or mRNA1273 (50 µg, half-m1273). The COV-BOOST trial is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. Results: Between 11 and 25 January 2022, 166 participants in the original BNT arm were randomised and received a fourth dose vaccine. The median age was 70.1 (interquartile range: 51.6-77.5) years with 51.8 % (n=86) female participants. The median interval between third and fourth dose was 208.5 (interquartile range: 203.25-214.75) days.Pain and fatigue were the most common local and systemic solicited adverse events for BNT and half-m1273. None of three serious adverse events reported after a fourth dose were related to study vaccine.The fold rises in anti-spike IgG pre- and post-fourth dose were 12.19 (95%CI: 10.37-14.32) and 15.90 (95%CI: 12.92-19.58) in BNT and half-m1273 arms respectively, with fold changes compared to the post third dose-peak of 1.59 (95%CI: 1.41-1.78) and 2.19 (95%CI: 1.90-2.52). T cell responses also boosted. Conclusions: Fourth dose COVID-19 mRNA booster vaccines are well-tolerated and boost cellular and humoral immunity up to, and beyond peak levels achieved following third dose boosters (ISRCTN: 73765130).

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331670

ABSTRACT

Objective To determine how the severity of successively dominant SARS-CoV-2 variants has changed over the course of the COVID-19 pandemic. Design Prospective cohort analysis. Setting Community- and hospital- sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board (1.2 million people). Participants All sequenced non-nosocomial adult COVID-19 cases in NHS GG&C identified to be infected with the relevant SARS-CoV-2 lineage during the following analysis periods. B.1.177/Alpha analysis: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta analysis: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta analysis: 1st July – 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron analysis: 1st – 31st December 2021 (n = 3858). Main outcome measures Admission to hospital, admission to ICU, or death within 28 days of first positive COVID-19 test Results In the B.1.177/Alpha analysis, 300 of 807 (37.2%) B.1.177 cases were recorded as hospitalised or having a more severe outcome, compared to 232 of 833 (27.9%) Alpha cases. After adjusting for the following covariates: age, sex, time of positive test, comorbidities and partial postcode, the cumulative odds ratio was 1.51 (95% central credible interval 1.08-2.11) for Alpha versus B.1.177. In the Alpha/Delta analysis, 113 of 2104 (5.4%) Alpha cases were recorded as hospitalised or having a more severe outcome, compared to 230 of 3448 (6.7%) Delta cases. After adjusting for the above covariates plus number of vaccine doses and reinfection, the cumulative odds ratio was 2.09 (95% central credible interval 1.42-3.08) for Delta versus Alpha. In the non-AY.4.2 Delta/AY.4.2 Delta analysis, 845 of 8644 (9.8%) non-AY.4.2 Delta cases were recorded as hospitalised or having a more severe outcome, compared to 101 of 969 (10.4%) AY.4.2 Delta cases. After adjusting for the previously stated covariates, the cumulative odds ratio was 0.99 (95% central credible interval 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. In the non-AY.4.2 Delta/Omicron analysis, 30 of 1164 (2.6%) non-AY.4.2 Delta cases were recorded as hospitalised or having a more severe outcome, compared to 26 of 2694 (1.0%) Omicron cases. After adjusting for the previously listed covariates, the median cumulative odds ratio was 0.49 (95% central credible interval 0.22-1.06) for Omicron versus non-AY.4.2 Delta. Conclusions The direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity in virulence between variants, coupled with independent evolutionary emergence, demonstrates that severity associated with future SARS-CoV-2 variants is inherently unpredictable.

5.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327612

ABSTRACT

Introduction: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs;detected ≥48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01;P=0.14) or rapid (0.85, 0.48-1.50;P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322658

ABSTRACT

Background: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. Little is known about the impact their increased infectivity has on transmission within hospitals.Methods: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences.Findings: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages.Interpretation: Notwithstanding evidence from community studies that the Alpha variant is more transmissible, we find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.Funding Information: COG-UK HOCI funded by COG-UK consortium. The COG-UK consortium is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute.Declaration of Interests: None to declare. Ethics Approval Statement: Ethical approval for the HOCI study was provided by REC 20/EE/0118.

7.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
8.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295699

ABSTRACT

Background The B.1.1.7 (Alpha) SARS-CoV-2 variant of concern was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between the B.1.1.7 lineage infection and increased 28-day mortality. However, to date none have addressed the impact of infection on severity of illness or the need for oxygen or ventilation. Methods In this prospective clinical cohort sub-study of the COG-UK consortium, 1475 samples from hospitalised and community cases collected between the 1 st November 2020 and 30 th January 2021 were collected. These samples were sequenced in local laboratories and analysed for the presence of B.1.1.7-defining mutations. We prospectively matched sequence data to clinical outcomes as the lineage became dominant in Scotland and modelled the association between B.1.1.7 infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no support, 2. oxygen, 3. ventilation and 4. death. Additionally, we calculated an estimate of the growth rate of B.1.1.7-associated infections following introduction into Scotland using phylogenetic data. Results B.1.1.7 was responsible for a third wave of SARS-CoV-2 in Scotland, and rapidly replaced the previously dominant second wave lineage B.1.177) due to a significantly higher transmission rate (∼5 fold). Of 1475 patients, 364 were infected with B.1.1.7, 1030 with B.1.177 and 81 with other lineages. Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (B.1.1.7 versus non-B.1.1.7). Viral load was higher in B.1.1.7 samples than in non-B.1.1.7 samples as measured by cycle threshold (Ct) value (mean Ct change: -2.46, 95% CI: -4.22, -0.70). Conclusions The B.1.1.7 lineage was associated with more severe clinical disease in Scottish patients than co-circulating lineages. Funding COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. Funding was also provided by UKRI through the JUNIPER consortium (grant number MR/V038613/1). Sequencing and bioinformatics support was funded by the Medical Research Council (MRC) core award (MC UU 1201412).

9.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294620

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but the biological basis for this is unclear. We studied the profile of antibody and cellular immunity in children aged 3-11 years in comparison with adults. Antibody responses against spike and receptor binding domain (RBD) were high in children and seroconversion boosted antibody responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Seroneutralisation assays against alpha, beta and delta SARS-CoV-2 variants demonstrated comparable neutralising activity between children and adults. T cell responses against spike were >2-fold higher in children compared to adults and displayed a T H 1 cytokine profile. SARS-CoV-2 spike-specific T cells were also detected in many seronegative children, revealing pre-existing responses that were cross-reactive with seasonal Alpha and Beta-coronaviruses. Importantly, all children retained high antibody titres and cellular responses at 6 months after infection whilst relative antibody waning was seen in adults. Spike-specific responses in children also remained broadly stable beyond 12 months. Children thus distinctly generate robust, cross-reactive and sustained immune responses after SARS-CoV-2 infection with focussed specificity against spike protein. These observations demonstrate novel features of SARS-CoV-2-specific immune responses in children and may provide insight into their relative clinical protection. Furthermore, this information will help to guide the introduction of vaccination regimens in the paediatric population.

10.
Lancet ; 398(10318): 2258-2276, 2021 12 18.
Article in English | MEDLINE | ID: covidwho-1550152

ABSTRACT

BACKGROUND: Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY)control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS: Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION: All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING: UK Vaccine Taskforce and National Institute for Health Research.


Subject(s)
/administration & dosage , COVID-19/prevention & control , Immunization, Secondary/methods , Immunogenicity, Vaccine , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Female , Humans , Male , Middle Aged , Pandemics , Patient Safety , SARS-CoV-2 , United Kingdom
11.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Article in English | MEDLINE | ID: covidwho-1546978

ABSTRACT

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Immunization, Secondary , SARS-CoV-2/immunology , /immunology , /immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/prevention & control , HEK293 Cells , Humans
12.
Arch Dis Child ; 106(12): 1212-1217, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526461

ABSTRACT

OBJECTIVE: Children are relatively protected from COVID-19, due to a range of potential mechanisms. We investigated if contact with children also affords adults a degree of protection from COVID-19. DESIGN: Cohort study based on linked administrative data. SETTING: Scotland. STUDY POPULATION: All National Health Service Scotland healthcare workers and their household contacts as of March 2020. MAIN EXPOSURE: Number of young children (0-11 years) living in the participant's household. MAIN OUTCOMES: COVID-19 requiring hospitalisation, and any COVID-19 (any positive test for SARS-CoV-2) in adults aged ≥18 years between 1 March and 12 October 2020. RESULTS: 241 266, 41 198, 23 783 and 3850 adults shared a household with 0, 1, 2 and 3 or more young children, respectively. Over the study period, the risk of COVID-19 requiring hospitalisation was reduced progressively with increasing numbers of household children-fully adjusted HR (aHR) 0.93 per child (95% CI 0.79 to 1.10). The risk of any COVID-19 was similarly reduced, with the association being statistically significant (aHR per child 0.93; 95% CI 0.88 to 0.98). After schools reopened to all children in August 2020, no association was seen between exposure to young children and risk of any COVID-19 (aHR per child 1.03; 95% CI 0.92 to 1.14). CONCLUSION: Between March and October 2020, living with young children was associated with an attenuated risk of any COVID-19 and COVID-19 requiring hospitalisation among adults living in healthcare worker households. There was no evidence that living with young children increased adults' risk of COVID-19, including during the period after schools reopened.


Subject(s)
COVID-19/transmission , Family Characteristics , Health Personnel , Adult , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Cross Protection , Female , Hospitalization , Humans , Infant , Infant, Newborn , Male , Pandemics , Risk Factors , SARS-CoV-2 , Schools , Scotland/epidemiology
13.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
14.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Article in English | MEDLINE | ID: covidwho-1430555

ABSTRACT

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 , Coronavirus RNA-Dependent RNA Polymerase/genetics , Drug Resistance, Microbial/genetics , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Biological Evolution , COVID-19/drug therapy , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
15.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1430193

ABSTRACT

BACKGROUND: SARS-CoV-2 lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. METHODS: We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16 November 2020 to 10 January 2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. FINDINGS: Sequences were obtained from 2341 inpatients (HOCI cases=786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The HR for mortality of B.1.1.7 compared with other lineages was 1.01 (95% CI 0.79 to 1.28, p=0.94) and for ITU admission was 1.01 (95% CI 0.75 to 1.37, p=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95 to 1.78, p=0.096) and ITU admission (HR 1.82, 95% CI 1.15 to 2.90, p=0.011) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61 to 1.10, p=0.177; ITU HR 0.74, 95% CI 0.52 to 1.04, p=0.086). INTERPRETATION: In common with smaller studies of patients hospitalised with SARS-CoV-2, we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared with other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Severity of Illness Index , United Kingdom , Young Adult
16.
N Engl J Med ; 385(13): 1172-1183, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1287849

ABSTRACT

BACKGROUND: Early clinical data from studies of the NVX-CoV2373 vaccine (Novavax), a recombinant nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that contains the full-length spike glycoprotein of the prototype strain plus Matrix-M adjuvant, showed that the vaccine was safe and associated with a robust immune response in healthy adult participants. Additional data were needed regarding the efficacy, immunogenicity, and safety of this vaccine in a larger population. METHODS: In this phase 3, randomized, observer-blinded, placebo-controlled trial conducted at 33 sites in the United Kingdom, we assigned adults between the ages of 18 and 84 years in a 1:1 ratio to receive two intramuscular 5-µg doses of NVX-CoV2373 or placebo administered 21 days apart. The primary efficacy end point was virologically confirmed mild, moderate, or severe SARS-CoV-2 infection with an onset at least 7 days after the second injection in participants who were serologically negative at baseline. RESULTS: A total of 15,187 participants underwent randomization, and 14,039 were included in the per-protocol efficacy population. Of the participants, 27.9% were 65 years of age or older, and 44.6% had coexisting illnesses. Infections were reported in 10 participants in the vaccine group and in 96 in the placebo group, with a symptom onset of at least 7 days after the second injection, for a vaccine efficacy of 89.7% (95% confidence interval [CI], 80.2 to 94.6). No hospitalizations or deaths were reported among the 10 cases in the vaccine group. Five cases of severe infection were reported, all of which were in the placebo group. A post hoc analysis showed an efficacy of 86.3% (95% CI, 71.3 to 93.5) against the B.1.1.7 (or alpha) variant and 96.4% (95% CI, 73.8 to 99.5) against non-B.1.1.7 variants. Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups. CONCLUSIONS: A two-dose regimen of the NVX-CoV2373 vaccine administered to adult participants conferred 89.7% protection against SARS-CoV-2 infection and showed high efficacy against the B.1.1.7 variant. (Funded by Novavax; EudraCT number, 2020-004123-16.).


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Immunogenicity, Vaccine , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Humans , Injections, Intramuscular/adverse effects , Middle Aged , SARS-CoV-2 , Single-Blind Method , Vaccines, Synthetic/immunology , Young Adult
17.
Nature ; 596(7872): 417-422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1287811

ABSTRACT

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.


Subject(s)
Aging/immunology , COVID-19 Vaccines/immunology , Immunity , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Aging/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Immunity/genetics , Immunization, Secondary , Immunoglobulin A/immunology , Immunoglobulin Class Switching , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunologic Memory/immunology , Inflammation/blood , Inflammation/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
18.
Elife ; 102021 06 29.
Article in English | MEDLINE | ID: covidwho-1287004

ABSTRACT

Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. Methods: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission ≥8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%). Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period. Funding: COG-UK HOCI funded by COG-UK consortium, supported by funding from UK Research and Innovation, National Institute of Health Research and Wellcome Sanger Institute.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Cross Infection/diagnosis , Cross Infection/epidemiology , Disease Outbreaks/statistics & numerical data , Population Surveillance/methods , SARS-CoV-2/genetics , Genome, Viral , Hospitals/statistics & numerical data , Humans , Probability , Retrospective Studies , United Kingdom/epidemiology , Whole Genome Sequencing
19.
Nat Rev Microbiol ; 19(7): 409-424, 2021 07.
Article in English | MEDLINE | ID: covidwho-1253944

ABSTRACT

Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.


Subject(s)
COVID-19/virology , Immune Evasion , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/classification , Amino Acids/chemistry , Amino Acids/genetics , Antigenic Variation/genetics , Antigenic Variation/physiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines/immunology , COVID-19 Vaccines/standards , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/genetics , Mutation , Protein Conformation , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
J Infect ; 83(1): 96-103, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198895

ABSTRACT

OBJECTIVES: Patients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. METHODS: We combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. RESULTS: Of 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. CONCLUSIONS: Near-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Hospitals , Humans , Molecular Epidemiology , Renal Dialysis/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL