Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Infect ; 87(2): 128-135, 2023 08.
Article in English | MEDLINE | ID: covidwho-20230807

ABSTRACT

OBJECTIVES: To determine how the intrinsic severity of successively dominant SARS-CoV-2 variants changed over the course of the pandemic. METHODS: A retrospective cohort analysis in the NHS Greater Glasgow and Clyde (NHS GGC) Health Board. All sequenced non-nosocomial adult COVID-19 cases in NHS GGC with relevant SARS-CoV-2 lineages (B.1.177/Alpha, Alpha/Delta, AY.4.2 Delta/non-AY.4.2 Delta, non-AY.4.2 Delta/Omicron, and BA.1 Omicron/BA.2 Omicron) during analysis periods were included. Outcome measures were hospital admission, ICU admission, or death within 28 days of positive COVID-19 test. We report the cumulative odds ratio; the ratio of the odds that an individual experiences a severity event of a given level vs all lower severity levels for the resident and the replacement variant after adjustment. RESULTS: After adjustment for covariates, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177, 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha, 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta, 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta, and 0.86 (95% CI: 0.68-1.09) for BA.2 Omicron versus BA.1 Omicron. CONCLUSIONS: The direction of change in intrinsic severity between successively emerging SARS-CoV-2 variants was inconsistent, reminding us that the intrinsic severity of future SARS-CoV-2 variants remains uncertain.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , SARS-CoV-2/genetics , Retrospective Studies , Hospitalization
2.
J Infect Dis ; 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-2324707

ABSTRACT

Since the emergence of SARS-CoV-2, humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralisation responses against SARS-CoV-2Wuhan, SARS-CoV-2α, SARS-CoV-2δ and SARS-CoV-2ο pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2α or SARS-CoV-2δ, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design.

4.
J Infect ; 87(1): 18-26, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2299003

ABSTRACT

BACKGROUND: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose in June 2021. Monovalent messenger RNA (mRNA) COVID-19 vaccines were subsequently widely used for the third and fourth-dose vaccination campaigns in high-income countries. Real-world vaccine effectiveness against symptomatic infections following third doses declined during the Omicron wave. This report compares the immunogenicity and kinetics of responses to third doses of vaccines from day (D) 28 to D242 following third doses in seven study arms. METHODS: The trial initially included ten experimental vaccine arms (seven full-dose, three half-dose) delivered at three groups of six sites. Participants in each site group were randomised to three or four experimental vaccines, or MenACWY control. The trial was stratified such that half of participants had previously received two primary doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) and half had received two doses of BNT162b2 (Pfizer-BioNtech, hereafter referred to as BNT). The D242 follow-up was done in seven arms (five full-dose, two half-dose). The BNT vaccine was used as the reference as it was the most commonly deployed third-dose vaccine in clinical practice in high-income countries. The primary analysis was conducted using all randomised and baseline seronegative participants who were SARS-CoV-2 naïve during the study and who had not received a further COVID-19 vaccine for any reason since third dose randomisation. RESULTS: Among the 817 participants included in this report, the median age was 72 years (IQR: 55-78) with 50.7% being female. The decay rates of anti-spike IgG between vaccines are different among both populations who received initial doses of ChAd/ChAd and BNT/BNT. In the population that previously received ChAd/ChAd, mRNA vaccines had the highest titre at D242 following their vaccine dose although Ad26. COV2. S (Janssen; hereafter referred to as Ad26) showed slower decay. For people who received BNT/BNT as their initial doses, a slower decay was also seen in the Ad26 and ChAd arms. The anti-spike IgG became significantly higher in the Ad26 arm compared to the BNT arm as early as 3 months following vaccination. Similar decay rates were seen between BNT and half-BNT; the geometric mean ratios ranged from 0.76 to 0.94 at different time points. The difference in decay rates between vaccines was similar for wild-type live virus-neutralising antibodies and that seen for anti-spike IgG. For cellular responses, the persistence was similar between study arms. CONCLUSIONS: Heterologous third doses with viral vector vaccines following two doses of mRNA achieve more durable humoral responses compared with three doses of mRNA vaccines. Lower doses of mRNA vaccines could be considered for future booster campaigns.


Subject(s)
COVID-19 , Viral Vaccines , Female , Humans , Aged , Male , COVID-19 Vaccines , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/prevention & control , SARS-CoV-2 , Immunity , United Kingdom , Immunoglobulin G , Antibodies, Viral , Vaccination , Immunogenicity, Vaccine
5.
PLoS One ; 18(4): e0284187, 2023.
Article in English | MEDLINE | ID: covidwho-2301548

ABSTRACT

OBJECTIVES: The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. METHODS: In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. RESULTS: Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). CONCLUSIONS: The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Scotland/epidemiology , Genomics
7.
Clin Infect Dis ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2230877

ABSTRACT

BACKGROUND: The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against COVID-19 in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover; data to the end of the placebo-controlled phase are reported. METHODS: Adults aged 18-84 years received two doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who seroconverted to immunoglobulin G (IgG) against the nucleocapsid protein and did not meet criteria for symptomatic COVID-19 were classified as having asymptomatic disease. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses. RESULTS: Of 15185 participants, 13989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5 months) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% CI: 73.3-88.8). Vaccine efficacy was 100% (17.9-100.0) against severe disease and 76.3% (57.4-86.8) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-protein-specific induction of interferon-γ secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups. CONCLUSIONS: A two-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6 months postvaccination. A gradual decrease of protection suggests that a booster dose may be indicated.

8.
Nat Rev Microbiol ; 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2229120

ABSTRACT

Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.

9.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: covidwho-2217486

ABSTRACT

Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected ≥48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusions: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: NCT04405934.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , Infection Control/methods , Cross Infection/epidemiology , Cross Infection/prevention & control , Hospitals
10.
Sci Rep ; 12(1): 11735, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1947493

ABSTRACT

Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Genomics , Health Planning , Humans , SARS-CoV-2/genetics , United States , Universities
11.
Lancet Infect Dis ; 22(8): 1131-1141, 2022 08.
Article in English | MEDLINE | ID: covidwho-1946941

ABSTRACT

BACKGROUND: Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS: The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS: Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6-77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3-214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030-27 162), which increased to 37 460 ELU/mL (31 996-43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41-1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996-30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826-64 452), with a geometric mean fold change of 2·19 (1·90-2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37-14·32) and 15·90 (12·92-19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24-16·54] in the BNT162b2 group and 6·22 [3·90-9·92] in the mRNA-1273 group). INTERPRETATION: Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. FUNDING: UK Vaccine Task Force and National Institute for Health Research.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Male , Middle Aged , SARS-CoV-2
12.
Nat Microbiol ; 7(8): 1161-1179, 2022 08.
Article in English | MEDLINE | ID: covidwho-1921616

ABSTRACT

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , BNT162 Vaccine , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism , Virus Internalization
13.
J Infect ; 84(6): 795-813, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778315

ABSTRACT

OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Amongst the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd), schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10,085) following ChAd/ChAd/BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT)). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 µg) or BNT (30 µg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 µg) versus BNT (30 µg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentrations at D84 following BNT/BNT initial doses were similar to or even higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new variants of concern, the maintenance of immune responses that confer long-lasting protection against severe disease or death is also of critical importance. Policymakers may also consider adenoviral vector, fractional dose of mRNA, or other non-mRNA vaccines as third doses.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Adult , Aged , Aged, 80 and over , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Middle Aged , SARS-CoV-2 , United Kingdom , mRNA Vaccines
14.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
15.
Lancet ; 398(10318): 2258-2276, 2021 12 18.
Article in English | MEDLINE | ID: covidwho-1550152

ABSTRACT

BACKGROUND: Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY)control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS: Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION: All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING: UK Vaccine Taskforce and National Institute for Health Research.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Immunization, Secondary/methods , Immunogenicity, Vaccine , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/immunology , COVID-19/immunology , ChAdOx1 nCoV-19/immunology , Female , Humans , Male , Middle Aged , Pandemics , Patient Safety , SARS-CoV-2 , United Kingdom
16.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Article in English | MEDLINE | ID: covidwho-1546978

ABSTRACT

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy , Antigenic Drift and Shift/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/prevention & control , HEK293 Cells , Humans
17.
Arch Dis Child ; 106(12): 1212-1217, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526461

ABSTRACT

OBJECTIVE: Children are relatively protected from COVID-19, due to a range of potential mechanisms. We investigated if contact with children also affords adults a degree of protection from COVID-19. DESIGN: Cohort study based on linked administrative data. SETTING: Scotland. STUDY POPULATION: All National Health Service Scotland healthcare workers and their household contacts as of March 2020. MAIN EXPOSURE: Number of young children (0-11 years) living in the participant's household. MAIN OUTCOMES: COVID-19 requiring hospitalisation, and any COVID-19 (any positive test for SARS-CoV-2) in adults aged ≥18 years between 1 March and 12 October 2020. RESULTS: 241 266, 41 198, 23 783 and 3850 adults shared a household with 0, 1, 2 and 3 or more young children, respectively. Over the study period, the risk of COVID-19 requiring hospitalisation was reduced progressively with increasing numbers of household children-fully adjusted HR (aHR) 0.93 per child (95% CI 0.79 to 1.10). The risk of any COVID-19 was similarly reduced, with the association being statistically significant (aHR per child 0.93; 95% CI 0.88 to 0.98). After schools reopened to all children in August 2020, no association was seen between exposure to young children and risk of any COVID-19 (aHR per child 1.03; 95% CI 0.92 to 1.14). CONCLUSION: Between March and October 2020, living with young children was associated with an attenuated risk of any COVID-19 and COVID-19 requiring hospitalisation among adults living in healthcare worker households. There was no evidence that living with young children increased adults' risk of COVID-19, including during the period after schools reopened.


Subject(s)
COVID-19/transmission , Family Characteristics , Health Personnel , Adult , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Cross Protection , Female , Hospitalization , Humans , Infant , Infant, Newborn , Male , Pandemics , Risk Factors , SARS-CoV-2 , Schools , Scotland/epidemiology
18.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
19.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Article in English | MEDLINE | ID: covidwho-1430555

ABSTRACT

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/genetics , Drug Resistance, Microbial/genetics , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Biological Evolution , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
20.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1430193

ABSTRACT

BACKGROUND: SARS-CoV-2 lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. METHODS: We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16 November 2020 to 10 January 2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. FINDINGS: Sequences were obtained from 2341 inpatients (HOCI cases=786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The HR for mortality of B.1.1.7 compared with other lineages was 1.01 (95% CI 0.79 to 1.28, p=0.94) and for ITU admission was 1.01 (95% CI 0.75 to 1.37, p=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95 to 1.78, p=0.096) and ITU admission (HR 1.82, 95% CI 1.15 to 2.90, p=0.011) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61 to 1.10, p=0.177; ITU HR 0.74, 95% CI 0.52 to 1.04, p=0.086). INTERPRETATION: In common with smaller studies of patients hospitalised with SARS-CoV-2, we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared with other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Severity of Illness Index , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL