Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Infect Dis ; 225(12): 2142-2154, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1740900

ABSTRACT

BACKGROUND: Specialized proresolution molecules (SPMs) halt the transition to chronic pathogenic inflammation. We aimed to quantify serum levels of pro- and anti-inflammatory bioactive lipids in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients, and to identify potential relationships with innate responses and clinical outcome. METHODS: Serum from 50 hospital admitted inpatients (22 female, 28 male) with confirmed symptomatic SARS-CoV-2 infection and 94 age- and sex-matched controls collected prior to the pandemic (SARS-CoV-2 negative), were processed for quantification of bioactive lipids and anti-nucleocapsid and anti-spike quantitative binding assays. RESULTS: SARS-CoV-2 serum had significantly higher concentrations of omega-6-derived proinflammatory lipids and omega-6- and omega-3-derived SPMs, compared to the age- and sex-matched SARS-CoV-2-negative group, which were not markedly altered by age or sex. There were significant positive correlations between SPMs, proinflammatory bioactive lipids, and anti-spike antibody binding. Levels of some SPMs were significantly higher in patients with an anti-spike antibody value >0.5. Levels of linoleic acid and 5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid were significantly lower in SARS-CoV-2 patients who died. CONCLUSIONS: SARS-CoV-2 infection was associated with increased levels of SPMs and other pro- and anti-inflammatory bioactive lipids, supporting the future investigation of the underlying enzymatic pathways, which may inform the development of novel treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Eicosanoids , Female , Humans , Male , Spike Glycoprotein, Coronavirus
2.
Immunology ; 166(1): 68-77, 2022 05.
Article in English | MEDLINE | ID: covidwho-1685320

ABSTRACT

SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/genetics , COVID-19 Vaccines , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , SARS-CoV-2
3.
Sci Transl Med ; 13(609): eabj0847, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1406600

ABSTRACT

Understanding the impact of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the response to vaccination is a priority for responding to the coronavirus disease 2019 (COVID-19) pandemic. In particular, it is necessary to understand how prior infection plus vaccination can modulate immune responses against variants of concern. To address this, we sampled 20 individuals with and 25 individuals without confirmed previous SARS-CoV-2 infection from a large cohort of health care workers followed serologically since April 2020. All 45 individuals had received two doses of the Pfizer-BioNTech BNT162b2 vaccine with a delayed booster at 10 weeks. Absolute and neutralizing antibody titers against wild-type SARS-CoV-2 and variants were measured using enzyme immunoassays and pseudotype neutralization assays. We observed antibody reactivity against lineage A, B.1.351, and P.1 variants with increasing antigenic exposure, through either vaccination or natural infection. This improvement was further confirmed in neutralization assays using fixed dilutions of serum samples. The impact of antigenic exposure was more evident in enzyme immunoassays measuring SARS-CoV-2 spike protein­specific IgG antibody concentrations. Our data show that multiple exposures to SARS-CoV-2 spike protein in the context of a delayed booster expand the neutralizing breadth of the antibody response to neutralization-resistant SARS-CoV-2 variants. This suggests that additional vaccine boosts may be beneficial in improving immune responses against future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19 Vaccines , Humans
4.
Sci Transl Med ; 13(609): eabj0847, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1352520

ABSTRACT

Understanding the impact of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the response to vaccination is a priority for responding to the coronavirus disease 2019 (COVID-19) pandemic. In particular, it is necessary to understand how prior infection plus vaccination can modulate immune responses against variants of concern. To address this, we sampled 20 individuals with and 25 individuals without confirmed previous SARS-CoV-2 infection from a large cohort of health care workers followed serologically since April 2020. All 45 individuals had received two doses of the Pfizer-BioNTech BNT162b2 vaccine with a delayed booster at 10 weeks. Absolute and neutralizing antibody titers against wild-type SARS-CoV-2 and variants were measured using enzyme immunoassays and pseudotype neutralization assays. We observed antibody reactivity against lineage A, B.1.351, and P.1 variants with increasing antigenic exposure, through either vaccination or natural infection. This improvement was further confirmed in neutralization assays using fixed dilutions of serum samples. The impact of antigenic exposure was more evident in enzyme immunoassays measuring SARS-CoV-2 spike protein­specific IgG antibody concentrations. Our data show that multiple exposures to SARS-CoV-2 spike protein in the context of a delayed booster expand the neutralizing breadth of the antibody response to neutralization-resistant SARS-CoV-2 variants. This suggests that additional vaccine boosts may be beneficial in improving immune responses against future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19 Vaccines , Humans
SELECTION OF CITATIONS
SEARCH DETAIL