ABSTRACT
BACKGROUND: Studies that have evaluated the use of intravenous vitamin C in adults with sepsis who were receiving vasopressor therapy in the intensive care unit (ICU) have shown mixed results with respect to the risk of death and organ dysfunction. METHODS: In this randomized, placebo-controlled trial, we assigned adults who had been in the ICU for no longer than 24 hours, who had proven or suspected infection as the main diagnosis, and who were receiving a vasopressor to receive an infusion of either vitamin C (at a dose of 50 mg per kilogram of body weight) or matched placebo administered every 6 hours for up to 96 hours. The primary outcome was a composite of death or persistent organ dysfunction (defined by the use of vasopressors, invasive mechanical ventilation, or new renal-replacement therapy) on day 28. RESULTS: A total of 872 patients underwent randomization (435 to the vitamin C group and 437 to the control group). The primary outcome occurred in 191 of 429 patients (44.5%) in the vitamin C group and in 167 of 434 patients (38.5%) in the control group (risk ratio, 1.21; 95% confidence interval [CI], 1.04 to 1.40; P = 0.01). At 28 days, death had occurred in 152 of 429 patients (35.4%) in the vitamin C group and in 137 of 434 patients (31.6%) in the placebo group (risk ratio, 1.17; 95% CI, 0.98 to 1.40) and persistent organ dysfunction in 39 of 429 patients (9.1%) and 30 of 434 patients (6.9%), respectively (risk ratio, 1.30; 95% CI, 0.83 to 2.05). Findings were similar in the two groups regarding organ-dysfunction scores, biomarkers, 6-month survival, health-related quality of life, stage 3 acute kidney injury, and hypoglycemic episodes. In the vitamin C group, one patient had a severe hypoglycemic episode and another had a serious anaphylaxis event. CONCLUSIONS: In adults with sepsis receiving vasopressor therapy in the ICU, those who received intravenous vitamin C had a higher risk of death or persistent organ dysfunction at 28 days than those who received placebo. (Funded by the Lotte and John Hecht Memorial Foundation; LOVIT ClinicalTrials.gov number, NCT03680274.).
Subject(s)
Ascorbic Acid , Sepsis , Adult , Ascorbic Acid/adverse effects , Humans , Hypoglycemic Agents/therapeutic use , Intensive Care Units , Multiple Organ Failure , Quality of Life , Sepsis/drug therapy , Vasoconstrictor Agents/adverse effects , Vitamins/adverse effectsABSTRACT
OBJECTIVES: To determine whether hydroxychloroquine when used with personal protective equipment reduces the proportion of laboratory-confirmed COVID-19 among healthcare workers in comparison to the use of personal protective equipment alone. DESIGN: Multicentre, parallel-group, open-label randomised trial. Enrolment started on 29 June 2020 and stopped on 4 February 2021. Participants randomised in HydrOxychloroquine Prophylaxis Evaluation were followed for 6 months. SETTING: 9 hospitals across India. PARTICIPANTS: Healthcare workers in an environment with exposure to COVID-19 were randomised in a 1:1 ratio to hydroxychloroquine plus use of personal protective equipment or personal protective equipment alone. 886 participants were screened and 416 randomised (213 hydroxychloroquine arm and 203 personal protective equipment). INTERVENTION: Participants in intervention arm received 800 mg of hydroxychloroquine on day of randomisation and then 400 mg once a week for 12 weeks in addition to the use of personal protective equipment. In the control arm, participants continued to use personal protective equipment alone. MAIN OUTCOME: Proportion of laboratory-confirmed COVID-19 in the 6 months after randomisation. RESULTS: Participants were young (mean age 32.1 years, SD 9.1 years) with low-comorbid burden. 47.4% were female. In the 6 months after randomisation (primary analysis population=413), 11 participants assigned to the hydroxychloroquine group and 12 participants assigned to the standard practice group met the primary endpoint (5.2% vs 5.9%; OR 0.85, 95% CI 0.35 to 2.07, p=0.72). There was no heterogeneity of treatment effect in any prespecified subgroup. There were no significant differences in the secondary outcomes. The adverse event rates were 9.9% and 6.9% in the hydroxychloroquine and standard practice arms, respectively. There were no serious adverse events in either group. CONCLUSIONS AND RELEVANCE: Hydroxychloroquine along with personal protective equipment was not superior to personal protective equipment alone on the proportion of laboratory-confirmed COVID-19. Definitive conclusions are precluded as the trial stopped early for futility, and hence was underpowered. TRIAL REGISTRATION NUMBER: CTRI/2020/05/025067.
Subject(s)
COVID-19 Drug Treatment , COVID-19 , Personal Protective Equipment , Adult , COVID-19/prevention & control , Female , Health Personnel , Humans , Hydroxychloroquine/therapeutic use , India/epidemiology , MaleABSTRACT
BACKGROUND: The LOVIT (Lessening Organ Dysfunction with Vitamin C) trial is a blinded multicenter randomized clinical trial comparing high-dose intravenous vitamin C to placebo in patients admitted to the intensive care unit with proven or suspected infection as the main diagnosis and receiving a vasopressor. OBJECTIVE: We aim to describe a prespecified statistical analysis plan (SAP) for the LOVIT trial prior to unblinding and locking of the trial database. METHODS: The SAP was designed by the LOVIT principal investigators and statisticians, and approved by the steering committee and coinvestigators. The SAP defines the primary and secondary outcomes, and describes the planned primary, secondary, and subgroup analyses. RESULTS: The SAP includes a draft participant flow diagram, tables, and planned figures. The primary outcome is a composite of mortality and persistent organ dysfunction (receipt of mechanical ventilation, vasopressors, or new renal replacement therapy) at 28 days, where day 1 is the day of randomization. All analyses will use a frequentist statistical framework. The analysis of the primary outcome will estimate the risk ratio and 95% CI in a generalized linear mixed model with binomial distribution and log link, with site as a random effect. We will perform a secondary analysis adjusting for prespecified baseline clinical variables. Subgroup analyses will include age, sex, frailty, severity of illness, Sepsis-3 definition of septic shock, baseline ascorbic acid level, and COVID-19 status. CONCLUSIONS: We have developed an SAP for the LOVIT trial and will adhere to it in the analysis phase. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/36261.
ABSTRACT
Background: Coronavirus disease 2019 (COVID-19) has been responsible for over 3.4 million deaths globally and over 25 million cases in India. As part of the response, India imposed a nation-wide lockdown and prioritized COVID-19 care in hospitals and intensive care units (ICUs). Leveraging data from the Indian Registry of IntenSive care, we sought to understand the impact of the COVID-19 pandemic on critical care service utilization, case-mix, and clinical outcomes in non-COVID ICUs. Methods: We included all consecutive patients admitted between 1 st October 2019 and 27 th September 2020. Data were extracted from the registry database and included patients admitted to the non-COVID or general ICUs at each of the sites. Outcomes included measures of resource-availability, utilisation, case-mix, acuity, and demand for ICU beds. We used a Mann-Whitney test to compare the pre-pandemic period (October 2019 - February 2020) to the pandemic period (March-September 2020). In addition, we also compared the period of intense lockdown (March-May 31 st 2020) with the pre-pandemic period. Results: There were 3424 patient encounters in the pre-pandemic period and 3524 encounters in the pandemic period. Comparing these periods, weekly admissions declined (median [Q1 Q3] 160 [145,168] to 113 [98.5,134]; p=0.00002); unit turnover declined (median [Q1 Q3] 12.1 [11.32,13] to 8.58 [7.24,10], p<0.00001), and APACHE II score increased (median [Q1 Q3] 19 [19,20] to 21 [20,22] ; p<0.00001). Unadjusted ICU mortality increased (9.3% to 11.7%, p=0.01519) and the length of ICU stay was similar (median [Q1 Q3] 2.11 [2, 2] vs. 2.24 [2, 3] days; p=0.15096). Conclusion: Our registry-based analysis of the impact of COVID-19 on non-COVID critical care demonstrates significant disruptions to healthcare utilization during the pandemic and an increase in the severity of illness.
ABSTRACT
OBJECTIVES: To evaluate the effect of the combination of hydroxychloroquine (HCQ) and standard personal protective equipment (PPE) compared to the use of standard personal protective equipment alone on the proportion of laboratory confirmed COVID-19 infections among frontline healthcare workers(HCWs) in India TRIAL DESIGN: HOPE is an investigator initiated multi-centre open-label parallel group randomized controlled trial. PARTICIPANTS: All HCWs currently working in an environment with direct exposure to patients with confirmed COVID-19 infection are eligible to participate in the trial. The trial aims to be conducted across 20-30 centres (public and private hospitals) in India. HCWs who decline consent, who have a confirmed COVID-19 infection, those who are already on chloroquine/HCQ for any indication, or if pregnant or breast-feeding, or have known QT prolongation or are on medications that when taken with HCQ can prolong the QTc will be excluded. INTERVENTION AND COMPARATOR: The interventions to be compared in this trial are standard practice (use of recommended PPE) and HCQ plus standard practice. In the standard practice arm, HCWs will use recommended PPE as per institutional guidelines and based on their roles. They will be discouraged from taking HCQ to prevent contamination and contacted every week for the duration of the study to ascertain if they have taken any HCQ. Any such use will be reported as a protocol violation. In the intervention arm, HCWs will be administered 800mg of HCQ as a loading dose on the day of randomization (as two 400mg doses 12hrs apart) and subsequently continued on 400mg once a week for 12 weeks. This will be in addition to the use of recommended PPE as per institutional guidelines and based on their roles. HCWs will collect the drug once every week from designated research and pharmacy staff at site. A weekly phone reminder will be provided to participants in this arm to ensure compliance. An ECG will be performed between 4-6 weeks in this arm and if the QTc is prolonged (greater than 450milliseconds), the drug will be stopped. Follow-up will however continue. Participants in both arms will receive a weekly phone call for evaluation of the primary outcome, to monitor protocol compliance and development of any adverse events (in the HCQ group). MAIN OUTCOMES: Participants will be followed on a weekly basis. The primary outcome is the proportion of HCWs developing laboratory confirmed COVID-19 infection within 6 months of randomization. We will also evaluate a number of secondary outcomes, including hospitalization related to suspected/confirmed COVID-19 infection, intensive care unit or high-dependency unit admission due to suspected/confirmed COVID-19 infection, all-cause mortality, need for organ support ( non-invasive or invasive ventilation, vasopressors and renal replacement therapy), ICU and hospital length of stay, readmission, days off work and treatment-related adverse events. RANDOMISATION: Randomisation will be conducted through a password-protected, secure website using a central, computer-based randomisation program. Randomisation will be stratified by participating institutions and by the role of HCW - nursing, medical and other. Participants will be randomised 1:1 to either standard practice only or HCQ plus standard practice. Allocation concealment is maintained by central web-based randomisation BLINDING (MASKING): This is an unblinded study: study assigned treatment will be known to the research team and participant. Bias will be mitigated through an objective end point (laboratory confirmed COVID-19 infection). NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 6,950 HCWs will be enrolled (3475 to the intervention) and (3475 to the standard practice group) to detect a 25% relative reduction, or 2.5% absolute reduction, in the infection rate from an estimated baseline infection rate of 10%, with 80% statistical power using a two-sided test at 5% level of significance. Available data from China and Italy indicate that the rate of infection among frontline healthcare workers varies between 4% to 12%. We therefore assumed a baseline infection rate of 10% among HCWs. This sample size allows for a potential loss to follow-up rate of 10% and a potential non-compliance rate of 10% in both the treatment and control arms. TRIAL STATUS: HOPE protocol version 3.0 dated June 3rd 2020. Recruitment started on 29th June 2020 and currently 56 participants have been enrolled. Planned completion of enrolment is January 31st 2021. TRIAL REGISTRATION: Clinical Trials Registry of India: CTRI/2020/05/025067 (prospectively registered) Date of registration: 6th May 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expedited dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).
Subject(s)
Coronavirus Infections/prevention & control , Enzyme Inhibitors/therapeutic use , Health Personnel , Hydroxychloroquine/therapeutic use , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Occupational Diseases/prevention & control , Pandemics/prevention & control , Personal Protective Equipment , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Chemoprevention , Coronavirus Infections/transmission , Humans , India , Pneumonia, Viral/transmission , SARS-CoV-2ABSTRACT
Coronavirus disease 2019 cases in India continue to increase and are expected to peak over the next few weeks. Based on some projection models, India is expected to have more than 10 million cases by September 2020. The spectrum of disease can vary from mild upper respiratory tract symptoms to life-threatening acute respiratory distress syndrome and multi-organ failure requiring intensive care. Even if less than 5% of patients require critical care services, this will still rapidly overwhelm the healthcare system in a country, where intensive care services and resources are scarce and unevenly distributed. In this perspective article, we highlight the critical care preparedness of India for the pandemic and the associated challenges.
ABSTRACT
How to cite this article: Ramakrishnan N, Vijayaraghavan BKT, Venkataraman R. Breaking Barriers to Reach Farther: A Call for Urgent Action on Tele-ICU Services. Indian J Crit Care Med 2020;24(6):393-397.