Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors and Bioelectronics: X ; 13, 2023.
Article in English | Scopus | ID: covidwho-2246569

ABSTRACT

This paper presents a portable, fast and accurate electrochemical impedance spectroscopy (EIS) device with 8-well interdigitated electrode chips for biomarker detection. The design adopts low crest factor multisine signal synthesis at low frequencies (<1 kHz) and single-tone signals at high frequencies (>1 kHz), which significantly increases measurement speed without sacrificing accuracy. In addition, the low excitation amplitude of 10 mV preserves impedance linearity and protects the biosamples. The system achieved an average magnitude accuracy error of 0.30% in the frequency range of interest and it requires only 0.46 s to scan 28 frequency points from 10 Hz to 1 MHz. Experiments were conducted to test the capability to detect antibodies against SARS-CoV-2. Gold nanoparticles bound with protein G (GNP-G) were employed as the conjugated secondary antibody probe to detect anti-SARS-CoV-2 IgG in serum. A highly statistical significance (p = 7×10−6) could be found in the impedance data at 10 kHz. The impedance magnitude alteration caused by the GNP-G of the positive and negative groups were 27.2%±13.6% and 4.1%±1.7%, respectively. The results imply that the proposed system enables rapid COVID-19 antibody biomarker detection. Moreover, the EIS system and GNPs have the potential to be modified to detect other biomarkers. © 2022 The Author(s)

SELECTION OF CITATIONS
SEARCH DETAIL