Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sustain Chem Pharm ; 29: 100757, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1895428

ABSTRACT

Doxycycline and Naproxen are among the most widely used drugs in the therapy of CoVID 19 disease found in surface water. Water scarcity in recent years has led to research to treat polluted water. One of the easy and low-cost methods for treatment is adsorption. The utilize of Metal-Organic Frameworks (MOFs) to evacuate pharmaceutical contaminants from water sources has been considered by researchers in the last decade. In this research, HKUST-1/ZnO/SA composite with high adsorption capacity, chemical and water stability, recovery, and reuse properties has been synthesized and investigated. By adding 10 wt% of ZnO and 50 wt% of sodium alginate to HKUST-1, at 25 °C and pH = 7, the specific surface area is reduced by 60%. The parameters of drugs concentration C0 =(5,80) mg/L, time=(15,240) min, and pH= (2,12) were investigated, and the results showed that the HKUST-1/ZnO/SA is stable in water for 14 days and it can be used in 10 cycles with 80% removal efficiency. The maximum Adsorption loading of doxycycline and Naproxen upon HKUST-1/ZnO/SA is 97.58 and 80.04 mg/g, respectively. Based on the correlation coefficient (R2), the pseudo-second-order and the Langmuir isotherm models were selected for drug adsorption. The proposed mechanism of drug uptake is by MOFs, hydrogen bonding, electrostatic bonding, and acid-base interaction.

2.
J Mol Liq ; 354: 118901, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1730001

ABSTRACT

Since the commencement of the novel Coronavirus, the disease has quickly turned into a worldwide crisis so that there has been growing attention in discovering possible hit compounds for tackling this pandemic. Discovering standard treatment strategies is a serious challenge because little information is available about this emerged infectious virus. Regarding the high impact of time, applying computational procedures to choose promising drugs from a catalog of licensed medications provides a precious chance for combat against the life-threatening disorder of COVID-19. Molecular dynamics (MD) simulation is a promising approach for assessing the binding affinity of ligand-receptor as well as observing the conformational trajectory of docked complexes over time. Given that many computational studies are performed using MD along with the molecular docking on various candidates as antiviral inhibitors of COVID-19 protease, there is a demand to conduct a comprehensive review of the most important studies to reveal and compare the potential introduced agents that this study covers this defect. In this context, the present review intends to prepare an overview of these studies by considering RMSD, RMSF, radius of gyration, binding free energy, and Solvent-Accessible Surface Area (SASA) as effective parameters for evaluation. The outcomes will offer a road map for adjusting antiviral inhibitors, which can facilitate the selection and development of drug candidates for use in the medical therapy. Finally, the molecular modeling approaches rendered by this study may be valuable for future computational studies.

SELECTION OF CITATIONS
SEARCH DETAIL