Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Ther Adv Musculoskelet Dis ; 14: 1759720X221096366, 2022.
Article in English | MEDLINE | ID: covidwho-1916515

ABSTRACT

Although great improvements have been achieved in the fields of diagnosing and treating patients with giant-cell arteritis (GCA) in the last decades, several questions remain unanswered. The progressive increase in the number of older people, together with growing awareness of the disease and use of advanced diagnostic tools by healthcare professionals, foretells a possible increase in both prevalence and number of newly diagnosed patients with GCA in the coming years. A thorough clarification of pathogenetic mechanisms and a better definition of clinical subsets are the first steps toward a better understanding of the disease and, subsequently, toward a better use of existing and future therapeutic options. Examination of the role of different imaging techniques for GCA diagnosing and monitoring, optimization, and personalization of glucocorticoids and other immunosuppressive agents, further development and introduction of novel drugs, identification of prognostic factors for long-term outcomes and management of treatment discontinuation will be the central topics of the research agenda in years to come.

2.
Cell Rep Med ; 3(3): 100560, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1706398

ABSTRACT

Most patients infected with SARS-CoV-2 (COVID-19) experience mild, non-specific symptoms, but many develop severe symptoms associated with an excessive inflammatory response. Elevated plasma concentrations of soluble urokinase plasminogen activator receptor (suPAR) provide early warning of progression to severe respiratory failure (SRF) or death, but access to suPAR testing may be limited. The Severe COvid Prediction Estimate (SCOPE) score, derived from circulating concentrations of C-reactive protein, D- dimers, interleukin-6, and ferritin among patients not receiving non-invasive or invasive mechanical ventilation during the SAVE-MORE study, offers predictive accuracy for progression to SRF or death within 14 days comparable to that of a suPAR concentration of ≥6 ng/mL (area under receiver operator characteristic curve 0.81 for both). The SCOPE score is validated in two similar independent cohorts. A SCOPE score of 6 or more is an alternative to suPAR for predicting progression to SRF or death within 14 days of hospital admission for pneumonia, and it can be used to guide treatment decisions.


Subject(s)
COVID-19 , Respiratory Insufficiency , Biomarkers , COVID-19/diagnosis , Humans , Prognosis , Receptors, Urokinase Plasminogen Activator , Respiratory Insufficiency/diagnosis , SARS-CoV-2
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294791

ABSTRACT

Most patients infected with SARS-CoV-2 (COVID-19) experience mild, non-specific symptoms, but several develop severe symptoms associated with an excessive inflammatory response. Elevated plasma concentrations of soluble urokinase plasminogen activator receptor (suPAR) provide early warning of progression to severe respiratory failure (SRF) or death, but access to suPAR testing may be limited. The Severe COvid Prediction Estimate (SCOPE) score, derived from C-reactive protein, D-dimer, interleukin-6, and ferritin circulating concentrations at hospitalization during the SAVE-MORE study, offers comparable predictive accuracy for progression to SRF or death within 14 days as suPAR ≥6 ng/ml (area under receiver operator characteristic curve, 0.81 for both). SCOPE score was validated against an independent dataset from the SAVE study. The SCOPE score is an alternative to suPAR for predicting progression to SRF or death within 14 days of hospital admission for pneumonia, and it can be used to guide treatment decisions.<br><br>Funding: The study was funded in part by the Hellenic Institute for the Study of Sepsis and by Swedish Orphan Biovitrum. The Hellenic Institute for the Study of Sepsis is the Sponsor of the SAVE and SAVE-MORE studies.<br><br>Declaration of Interests:E. J. Giamarellos-Bourboulis has received honoraria from Abbott CH, bioMérieux, Brahms GmbH, GSK, InflaRx GmbH, Sobi and XBiotech Inc;independent educational grants from Abbott CH, AxisShield, bioMérieux Inc, InflaRx GmbH, Johnson & Johnson, MSD, Sobi and XBiotech Inc.;and funding from the Horizon2020 Marie-Curie Project European Sepsis Academy (granted to the National and Kapodistrian University of Athens), and the Horizon 2020 European Grants ImmunoSep and RISKinCOVID (granted to the Hellenic Institute for the Study of Sepsis). G. Poulakou has received independent educational grants from Pfizer, MSD, Angelini, and Biorad. H. Milionis reports receiving honoraria, consulting fees and non-financial support from healthcare companies, including Amgen, Angelini, Bayer, Mylan, MSD, Pfizer, and Servier. L. Dagna had received consultation honoraria from SOBI. M. Bassetti has received funds for research grants and/or advisor/consultant and/or speaker/chairman from Angelini, Astellas, Bayer, Biomerieux, Cidara, Cipla, Gilead, Menarini, MSD, Pfizer, Roche, Shionogi and Nabriva. P. Panagopoulos has received honoraria from GILEAD Sciences, Janssen, and MSD. G. N. Dalekos is an advisor or lecturer for Ipsen, Pfizer, Genkyotex, Novartis, Sobi, received research grants from Abbvie, Gilead and has served as PI in studies for Abbvie, Novartis, Gilead, Novo Nordisk, Genkyotex, Regulus Therapeutics Inc, Tiziana Life Sciences, Bayer, Astellas, Pfizer, Amyndas Pharmaceuticals, CymaBay Therapeutics Inc., Sobi and Intercept Pharmaceuticals. M. G. Netea is supported by an ERC Advanced Grant (#833247) and a Spinoza grant of the Netherlands Organization for Scientific Research. Hes is a scientific founder of TTxD and he has received independent educational grants from TTxD, GSK, Ono Pharma and ViiV HealthCare. The other authors do not have any competing interest to declare.<br><br>Ethics Approval Statement: The SAVE protocol was approved by the National Ethics Committee of Greece (approval 38/20) and National Organization for Medicines approval (ISO 28/20). The SAVE-MORE protocol was approved by the National Ethics Committee of Greece (approval 161/20) and by the Ethics Committee of the National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, in Rome (1 February 2021).<br><br>Trial Registration: The SAVE study was prospectively registered prior to enrolling the first patient (EudraCT number 2020-001466-11;ClinicalTrials.gov identifier NCT04357366). The SAVE-MORE study was prospectively registered (EudraCT no. 2020-005828-11;ClinicalTrials.gov identifier NCT04680949). Written informed consent was provided by all patients prior to enrollment.

6.
Front Immunol ; 12: 675678, 2021.
Article in English | MEDLINE | ID: covidwho-1231339

ABSTRACT

BACKGROUND: Restraining maladaptive inflammation is considered a rationale strategy to treat severe coronavirus disease-19 (COVID-19) but available studies with selective inhibitors of pro-inflammatory cytokines have not provided unequivocal evidence of survival advantage. Late administration is commonly regarded as a major cause of treatment failure but the optimal timing for anti-cytokine therapy initiation in COVID-19 patients has never been clearly established. OBJECTIVES: To identify a window of therapeutic opportunity for maximizing the efficacy of interleukin (IL)-1 and IL-6 blockade in COVID-19. METHODS: Survival at the longest available follow-up was assessed in severe hyper-inflamed COVID-19 patients treated with anakinra, tocilizumab, sarilumab, or standard of care, stratified according to respiratory impairment at the time of treatment initiation. RESULTS: 107 patients treated with biologics and 103 contemporary patients treated with standard of care were studied. After a median of 106 days of follow-up (range 3-186), treatment with biologics was associated with a significantly higher survival rate compared to standard therapy when initiated in patients with a PaO2/FiO2 ≥ 100 mmHg (p < 0.001). Anakinra reduced mortality also in patients with PaO2/FiO2 < 100 mmHg (p = 0.04). CONCLUSIONS: IL-1 and IL-6 blocking therapies are more likely to provide survival advantage in hyper-inflamed COVID-19 patients when initiated before the establishment of severe respiratory failure.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , SARS-CoV-2/immunology , Aged , COVID-19/drug therapy , COVID-19/immunology , COVID-19/mortality , Disease-Free Survival , Female , Follow-Up Studies , Humans , Interleukin-1/immunology , Interleukin-6/immunology , Male , Middle Aged , Severity of Illness Index , Survival Rate
7.
Lancet Rheumatol ; 3(4): e253-e261, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1228198

ABSTRACT

BACKGROUND: Patients with severe COVID-19 develop a life-threatening hyperinflammatory response to the virus. Interleukin (IL)-1 or IL-6 inhibitors have been used to treat this patient population, but the comparative effectiveness of these different strategies remains undetermined. We aimed to compare IL-1 and IL-6 inhibition in patients admitted to hospital with COVID-19, respiratory insufficiency, and hyperinflammation. METHODS: This cohort study included patients admitted to San Raffaele Hospital (Milan, Italy) with COVID-19, respiratory insufficiency, defined as a ratio of the partial pressure of oxygen to the fraction of inspired oxygen of 300 mm Hg or less, and hyperinflammation, defined as serum C-reactive protein concentration of 100 mg/L or more or ferritin concentration of 900 ng/mL or more. The primary endpoint was survival, and the secondary endpoint was a composite of death or mechanical ventilation (adverse clinical outcome). Multivariable Cox regression analysis was used to compare clinical outcomes of patients receiving IL-1 inhibition (anakinra) or IL-6 inhibition (tocilizumab or sarilumab) with those of patients who did not receive interleukin inhibitors, after accounting for baseline differences. All patients received standard care. Interaction tests were used to assess the probability of survival according to C-reactive protein or lactate dehydrogenase concentrations. FINDINGS: Of 392 patients included between Feb 25 and May 20, 2020, 275 did not receive interleukin inhibitors, 62 received the IL-1 inhibitor anakinra, and 55 received an IL-6 inhibitor (29 received tocilizumab and 26 received sarilumab). In the multivariable analysis, compared with patients who did not receive interleukin inhibitors, patients treated with IL-1 inhibition had a significantly reduced mortality risk (hazard ratio [HR] 0·450, 95% CI 0·204-0·990, p=0·047), but those treated with IL-6 inhibition did not (0·900, 0·412-1·966; p=0·79). In the multivariable analysis, there was no difference in adverse clinical outcome risk in patients treated with IL-1 inhibition (HR 0·866, 95% CI 0·482-1·553; p=0·63) or IL-6 inhibition (0·882, 0·452-1·722; p=0·71) relative to patients who did not receive interleukin inhibitors. For increasing C-reactive protein concentrations, patients treated with IL-6 inhibition had a significantly reduced risk of mortality (HR 0·990, 95% CI 0·981-0·999; p=0·031) and adverse clinical outcome (0·987, 0·979-0·995; p=0·0021) compared with patients who did not receive interleukin inhibitors. For decreasing concentrations of serum lactate dehydrogenase, patients treated with an IL-1 inhibitor and patients treated with IL-6 inhibitors had a reduced risk of mortality; increasing concentrations of lactate dehydrogenase in patients receiving either interleukin inhibitor were associated with an increased risk of mortality (HR 1·009, 95% CI 1·003-1·014, p=0·0011 for IL-1 inhibitors and 1·006, 1·001-1·011, p=0·028 for IL-6 inhibitors) and adverse clinical outcome (1·006, 1·002-1·010, p=0·0031 for IL-1 inhibitors and 1·005, 1·001-1·010, p=0·016 for IL-6 inhibitors) compared with patients who did not receive interleukin inhibitors. INTERPRETATION: IL-1 inhibition, but not IL-6 inhibition, was associated with a significant reduction of mortality in patients admitted to hospital with COVID-19, respiratory insufficiency, and hyperinflammation. IL-6 inhibition was effective in a subgroup of patients with markedly high C-reactive protein concentrations, whereas both IL-1 and IL-6 inhibition were effective in patients with low lactate dehydrogenase concentrations. FUNDING: None.

10.
Front Pharmacol ; 11: 598308, 2020.
Article in English | MEDLINE | ID: covidwho-1028187

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a condition caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Severe cases of COVID-19 result in acute respiratory distress syndrome and death. A detrimental, hyper-inflammatory immune response with excess release of cytokines is the main driver of disease development and of tissue damage in these patients. Thus, repurposing of biologic agents and other pharmacological inhibitors of cytokines used for the treatment of various inflammatory conditions emerged as a logical therapeutic strategy to quench inflammation and improve the clinical outcome of COVID-19 patients. Evaluated agents include the interleukin one receptor blocker anakinra, monoclonal antibodies inhibiting IL-6 tocilizumab and sarilumab, monoclonal antibodies inhibiting granulocyte-monocyte colony stimulating factor and tumor necrosis factor, and Janus kinase inhibitors. In this review, we discuss the efficacy and safety of these therapeutic options based on direct personal experience and on published evidence from observational studies and randomized clinical trials.

13.
Lancet Rheumatol ; 2(8): e465-e473, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-599198

ABSTRACT

BACKGROUND: Mortality in patients with COVID-19 pneumonia and systemic hyperinflammation is high. We aimed to examine whether mavrilimumab, an anti-granulocyte-macrophage colony-stimulating factor receptor-α monoclonal antibody, added to standard management, improves clinical outcomes in patients with COVID-19 pneumonia and systemic hyperinflammation. METHODS: This single-centre prospective cohort study included patients aged 18 years or older who were admitted to San Raffaele Hospital (Milan, Italy) with severe COVID-19 pneumonia, hypoxia, and systemic hyperinflammation. Patients received a single intravenous dose (6 mg/kg) of mavrilimumab added to standard care given by the hospital at the time. The control group consisted of contemporaneous patients with similar baseline characteristics who received standard care at the same hospital. The main outcome was time to clinical improvement (defined as improvement of two or more points on the seven-point ordinal scale of clinical status). Other outcomes included proportion of patients achieving clinical improvement, survival, mechanical ventilation-free survival, and time to fever resolution. Adverse events were monitored daily. FINDINGS: Between March 17 and April 15, 2020, 13 non-mechanically ventilated patients (median age 57 years [IQR 52-58], 12 [92%] men) received mavrilimumab and 26 patients (median age 60 [IQR 53-67], 17 [65%] men) in the control group received standard care. During the 28-day follow-up, no patients in the mavrilimumab group died, and seven (27%) patients in the control group died (p=0·086). At day 28, all patients in the mavrilimumab group and 17 (65%) patients in the control group showed clinical improvement (p=0·030), with earlier improvement in the mavrilimumab than in the control group (mean time to improvement 8 days [IQR 5 to 11] vs 19 days [11 to >28], p=0·0001). By day 28, one (8%) patient in the mavrilimumab group progressed to mechanical ventilation compared with nine (35%) patients in the control group who progressed to mechanical ventilation or died (p=0·14). By day 14, fever resolved in ten (91%) of 11 febrile patients in the mavrilimumab group, compared with 11 (61%) of 18 febrile patients in the control group (p=0·18); fever resolution was faster in mavrilimumab recipients versus controls (median time to resolution 1 day [IQR 1 to 2] vs 7 days [3 to >14], p=0·0093). Mavrilimumab was well tolerated, with no infusion reactions. Three (12%) patients in the control group developed infectious complications. INTERPRETATION: Mavrilimumab treatment was associated with improved clinical outcomes compared with standard care in non-mechanically ventilated patients with severe COVID-19 pneumonia and systemic hyperinflammation. Treatment was well tolerated. Confirmation of efficacy requires controlled testing. FUNDING: IRCCS San Raffaele Scientific Institute.

14.
Eur J Intern Med ; 76: 43-49, 2020 06.
Article in English | MEDLINE | ID: covidwho-483014

ABSTRACT

BACKGROUND: Tocilizumab (TCZ), a humanized monoclonal antibody targeting the interleukin-6 (IL-6) receptor, has been proposed for the treatment of COVID-19 patients; however, limited data are available on the safety and efficacy. METHODS: We performed a retrospective study on severe COVID-19 patients with hyper-inflammatory features admitted outside intensive care units (ICUs). Patients treated with intravenous TCZ in addition to standard of care were compared to patients treated with standard of care alone. Safety and efficacy were assessed over a 28-day follow-up. RESULTS: 65 patients were included. Among them, 32 were treated with TCZ. At baseline, all patients were on high-flow supplemental oxygen and most (78% of TCZ patients and 61% of standard treatment patients) were on non-invasive ventilation. During the 28-day follow-up, 69% of TCZ patients experienced a clinical improvement compared to 61% of standard treatment patients (p = 0.61). Mortality was 15% in the tocilizumab group and 33% in standard treatment group (p = 0.15). In TCZ group, at multivariate analysis, older age was a predictor of death, whereas higher baseline PaO2:FiO2 was a predictor of clinical improvement at day 28. The rate of infection and pulmonary thrombosis was similar between the two groups. CONCLUSIONS: At day 28, clinical improvement and mortality were not statistically different between tocilizumab and standard treatment patients in our cohort. Bacterial or fungal infections were recorded in 13% of tocilizumab patients and in 12% of standard treatment patients. Confirmation of efficacy and safety will require ongoing controlled trials.


Subject(s)
Antibodies, Monoclonal, Humanized , Coronavirus Infections , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Insufficiency , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antiviral Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Humans , Italy/epidemiology , Male , Middle Aged , Outcome and Process Assessment, Health Care , Oxygen Inhalation Therapy/methods , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiology , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2
15.
Lancet Rheumatol ; 2(6): e325-e331, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-197737

ABSTRACT

BACKGROUND: Mortality of patients with coronavirus disease 2019 (COVID-19), acute respiratory distress syndrome (ARDS), and systemic inflammation is high. In areas of pandemic outbreak, the number of patients can exceed maximum capacity of intensive care units (ICUs), and, thus, these individuals often receive non-invasive ventilation outside of the ICU. Effective treatments for this population are needed urgently. Anakinra is a recombinant interleukin-1 receptor antagonist that might be beneficial in this patient population. METHODS: We conducted a retrospective cohort study at the San Raffaele Hospital in Milan, Italy. We included consecutive patients (aged ≥18 years) with COVID-19, moderate-to-severe ARDS, and hyperinflammation (defined as serum C-reactive protein ≥100 mg/L, ferritin ≥900 ng/mL, or both) who were managed with non-invasive ventilation outside of the ICU and who received standard treatment of 200 mg hydroxychloroquine twice a day orally and 400 mg lopinavir with 100 mg ritonavir twice a day orally. We compared survival, mechanical ventilation-free survival, changes in C-reactive protein, respiratory function, and clinical status in a cohort of patients who received additional treatment with anakinra (either 5 mg/kg twice a day intravenously [high dose] or 100 mg twice a day subcutaneously [low dose]) with a retrospective cohort of patients who did not receive anakinra (referred to as the standard treatment group). All outcomes were assessed at 21 days. This study is part of the COVID-19 Biobank study, which is registered with ClinicalTrials.gov, NCT04318366. FINDINGS: Between March 17 and March 27, 2020, 29 patients received high-dose intravenous anakinra, non-invasive ventilation, and standard treatment. Between March 10 and March 17, 2020, 16 patients received non-invasive ventilation and standard treatment only and comprised the comparison group for this study. A further seven patients received low-dose subcutaneous anakinra in addition to non-invasive ventilation and standard treatment; however, anakinra treatment was interrupted after 7 days because of a paucity of effects on serum C-reactive protein and clinical status. At 21 days, treatment with high-dose anakinra was associated with reductions in serum C-reactive protein and progressive improvements in respiratory function in 21 (72%) of 29 patients; five (17%) patients were on mechanical ventilation and three (10%) died. In the standard treatment group, eight (50%) of 16 patients showed respiratory improvement at 21 days; one (6%) patient was on mechanical ventilation and seven (44%) died. At 21 days, survival was 90% in the high-dose anakinra group and 56% in the standard treatment group (p=0·009). Mechanical ventilation-free survival was 72% in the anakinra group versus 50% in the standard treatment group (p=0·15). Bacteraemia occurred in four (14%) of 29 patients receiving high-dose anakinra and two (13%) of 16 patients receiving standard treatment. Discontinuation of anakinra was not followed by inflammatory relapses. INTERPRETATION: In this retrospective cohort study of patients with COVID-19 and ARDS managed with non-invasive ventilation outside of the ICU, treatment with high-dose anakinra was safe and associated with clinical improvement in 72% of patients. Confirmation of efficacy will require controlled trials. FUNDING: None.

SELECTION OF CITATIONS
SEARCH DETAIL