Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2493319.v1

ABSTRACT

Since China eased its COVID-19 response strategies in late 2022, we have been witnessing a rapid and wide spread of SARS-CoV-2 infection across the major cities, including capital Beijing, where Omicron subvariant BF.7 has been dominating the infection. Here, we show that such expansion is unlikely due to a higher binding affinity of BF.7 to human receptor angiotensin-converting enzyme 2 (ACE2) as the similar binding activities were found for other Omicron subvariants tested such as BA.1, BA.5.2, BQ.1, BQ.1.1, XBB, and XBB.1. Additionally, through study of antibody response among six different clinical cohorts, we found that primary infection with BF.7 among the unvaccinated individuals only elicited type-specific neutralizing antibodies to the infecting virus and its close related strains. By a distinct contrast, breakthrough infection with BF.7 among the vaccinated individuals, particularly those severe cases, induced strong and broadly neutralizing antibodies to a diverse panel of SARS-CoV-2 variants and Omicron subvariants including the XBB lineage. A deeper understanding of how these broadly neutralizing antibodies were generated or boosted by BF.7 breakthrough infection will hold the key for augmenting antibody immunity against diverse SARS-CoV-2 variants.


Subject(s)
Breakthrough Pain , COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-258283.v1

ABSTRACT

SARS-CoV-2 has emerged as a major threat to global public health, resulting in global societal and economic disruptions. Here, we investigate the intramolecular and intermolecular RNA interactions of wildtype (WT) and a mutant (Δ382) SARS-CoV-2 virus in cells using high throughput structure probing on Illumina and Nanopore platforms. We identified twelve potentially functional structural elements within the SARS-CoV-2 genome, observed that identical sequences can fold into divergent structures on different subgenomic RNAs, and that WT and Δ382 virus genomes can fold differently. Proximity ligation sequencing experiments identified hundreds of intramolecular and intermolecular pair-wise interactions within the virus genome and between virus and host RNAs. SARS-CoV-2 binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2’-O-methylated. 2’-O-methylation sites in the virus genome are enriched in the untranslated regions and are associated with increased pair-wise interactions. SARS-CoV-2 infection results in a global decrease of 2’-O-methylation sites on host mRNAs, suggesting that binding to snoRNAs could be a pro-viral mechanism to sequester methylation machinery from host RNAs towards the virus genome. Collectively, these studies deepen our understanding of the molecular basis of SARS-CoV-2 pathogenicity, cellular factors important during infection and provide a platform for targeted therapy.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.09.434497

ABSTRACT

New SARS-CoV-2 variants continue to emerge from the current global pandemic, some of which can replicate faster and with greater transmissibility and pathogenicity. In particular, UK501Y.V1 identified in UK, SA501Y.V2 in South Africa, and BR501Y.V3 in Brazil are raising serious concerns as they spread quickly and contain spike protein mutations that may facilitate escape from current antibody therapies and vaccine protection. Here, we constructed a panel of 28 SARS CoV 2 pseudoviruses bearing single or combined mutations found in the spike protein of these three variants, as well as additional nine mutations that within or close by the major antigenic sites in the spike protein identified in the GISAID database. These pseudoviruses were tested against a panel of monoclonal antibodies (mAbs), including some approved for emergency use to treat SARS CoV 2 infection, and convalescent patient plasma collected early in the pandemic. SA501Y.V2 pseudovirus was the most resistant, in magnitude and breadth, against mAbs and convalescent plasma, followed by BR501Y.V3, and then UK501Y.V1. This resistance hierarchy corresponds with Y144del and 242-244del mutations in the N-terminal domain as well as K417N/T, E484K and N501Y mutations in the receptor binding domain (RBD). Crystal structural analysis of RBD carrying triple K417N E484K N501Y mutations found in SA501Y.V2 bound with mAb P2C-1F11 revealed a molecular basis for antibody neutralization and escape. SA501Y.V2 and BR501Y.V3 also acquired substantial ability to use mouse and mink ACE2 for entry. Taken together, our results clearly demonstrate major antigenic shifts and potentially broadening the host range of SA501Y.V2 and BR501Y.V3, which pose serious challenges to our current antibody therapies and vaccine protection.


Subject(s)
Severe Acute Respiratory Syndrome
5.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2103.00780v1

ABSTRACT

Despite tremendous efforts, it is very challenging to generate a robust model to assist in the accurate quantification assessment of COVID-19 on chest CT images. Due to the nature of blurred boundaries, the supervised segmentation methods usually suffer from annotation biases. To support unbiased lesion localisation and to minimise the labeling costs, we propose a data-driven framework supervised by only image-level labels. The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder. Experiments on two COVID-19 datasets demonstrate the effectiveness of the proposed framework and its superior performance to several existing methods.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.15.426908

ABSTRACT

Summary: Recently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFN and IFN{beta}, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


Subject(s)
Kidney Diseases
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.17.427000

ABSTRACT

SARS-CoV-2 has emerged as a major threat to global public health, resulting in global societal and economic disruptions. Here, we investigate the intramolecular and intermolecular RNA interactions of wildtype (WT) and a mutant ({Delta}382) SARS-CoV-2 virus in cells using high throughput structure probing on Illumina and Nanopore platforms. We identified twelve potentially functional structural elements within the SARS-CoV-2 genome, observed that identical sequences can fold into divergent structures on different subgenomic RNAs, and that WT and {Delta}382 virus genomes can fold differently. Proximity ligation sequencing experiments identified hundreds of intramolecular and intermolecular pair-wise interactions within the virus genome and between virus and host RNAs. SARS-CoV-2 binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2'-O-methylated. 2'-O-methylation sites in the virus genome are enriched in the untranslated regions and are associated with increased pair-wise interactions. SARS-CoV-2 infection results in a global decrease of 2'-O-methylation sites on host mRNAs, suggesting that binding to snoRNAs could be a pro-viral mechanism to sequester methylation machinery from host RNAs towards the virus genome. Collectively, these studies deepen our understanding of the molecular basis of SARS-CoV-2 pathogenicity, cellular factors important during infection and provide a platform for targeted therapy.


Subject(s)
COVID-19
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-44713.v4

ABSTRACT

Background: The progression of coagulation in COVID-19 patients with confirmed discharge status and the combination of autopsy with complete hemostasis parameters have not been well studied. Objective: To clarify the thrombotic phenomena and hemostasis state in COVID-19 patients based on epidemiological statistics combining autopsy and statistical analysis. Methods: : Using autopsy results from 9 patients with COVID-19 pneumonia and the medical records of 407 patients, including 39 deceased patients whose discharge status was certain, time-sequential changes in 11 relevant indices within mild, severe and critical infection throughout hospitalization according to the Chinese National Health Commission (NHC) guidelines were evaluated. Statistical tools were applied to calculate the importance of 11 indices and the correlation between those indices and the severity of COVID-19. Results: : At the beginning of hospitalization, platelet (PLT) counts were significantly reduced in critically ill patients compared with severely or mildly ill patients. Blood glucose (GLU), prothrombin time (PT), activated partial thromboplastin time (APTT), and D-dimer levels in critical patients were increased compared with mild and severe patients during the entire admission period. The International Society on Thrombosis and Haemostasis (ISTH) disseminated intravascular coagulation (DIC) score was also high in critical patients. In the relatively late stage of nonsurvivors, the temporal changes in PLT count, PT, and D-dimer levels were significantly different from those in survivors. A random forest model indicated that the most important feature was PT followed by D-dimer, indicating their positive associations with disease severity. Autopsy of deceased patients fulfilling diagnostic criteria for DIC revealed microthromboses in multiple organs. Conclusions: Combining autopsy data, time-sequential changes and statistical methods to explore hemostasis-relevant indices among the different severities of the disease helps guide therapy and detect prognosis in COVID-19 infection.


Subject(s)
Thrombosis , Thrombotic Microangiopathies , Voice Disorders , Agnosia , COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.21.392670

ABSTRACT

Poor outcomes after SARS-CoV-2 infection are difficult to predict. Survivors may develop pulmonary fibrosis. We previously identified a 52-gene signature in peripheral blood, predictive of mortality in Idiopathic Pulmonary Fibrosis. In this study, we analyzed this signature in SARS-CoV-2 infected individuals and identified genomic risk profiles with significant differences in outcomes. Analysis of single cell expression data shows that monocytes, red blood cells, neutrophils and dendritic cells are the cellular source of the high risk gene signature.


Subject(s)
Severe Acute Respiratory Syndrome , Idiopathic Pulmonary Fibrosis , Pulmonary Fibrosis , COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.361261

ABSTRACT

The recent COVID-19 pandemic has brought about a surge of crowd-sourced initiatives aimed at simulating the proteins of the SARS-CoV-2 virus. A bottleneck currently exists in translating these simulations into tangible predictions that can be leveraged for pharmacological studies. Here we report on extensive electrostatic calculations done on an exascale simulation of the opening of the SARS-CoV-2 spike protein, performed by the Folding@home initiative. We compute the electric potential as the solution of the non-linear Poisson-Boltzmann equation using a parallel sharp numerical solver. The inherent multiple length scales present in the geometry and solution are reproduced using highly adaptive Octree grids. We analyze our results focusing on the electro-geometric properties of the receptor-binding domain and its vicinity. This work paves the way for a new class of hybrid computational and data-enabled approaches, where molecular dynamics simulations are combined with continuum modeling to produce high-fidelity computational measurements serving as a basis for protein bio-mechanism investigations.


Subject(s)
COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360479

ABSTRACT

Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 205 COVID-19 patients and controls to create a comprehensive immune landscape. Lymphopenia and active T and B cell responses were found to coexist and associated with age, sex and their interactions with COVID-19. Diverse epithelial and immune cell types were observed to be virus-positive and showed dramatic transcriptomic changes. Elevation of ANXA1 and S100A9 in virus-positive squamous epithelial cells may enable the initiation of neutrophil and macrophage responses via the ANXA1-FPR1 and S100A8/9-TLR4 axes. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and designing effective therapeutic strategies for COVID-19.


Subject(s)
Carcinoma, Squamous Cell , Lymphopenia , COVID-19
12.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3673602

ABSTRACT

COVID-19 pandemic caused a significant increase in medical and infected domestic waste, greatly increasing risk of human infected with SARS-CoV-2. To control pandemic and restore social order, there is a great of importance to prevent the spread of SARS-CoV-2 from solid waste to humans. Here, we prepared a renewable wheat straw-based bio-liquid that can damage SARS-CoV-2 RNA and protein. The wet thermochemical extraction (WTE) bio-liquid, with total organic carbon concentration exceeding 1,892 mg/L, could effectively damage the virus. However, dry thermochemical extraction (DTE) samples were not efficient due to their low content of effective compounds. The life cycle assessment showed that WTE bio-liquid production implies lower energy and environmental impacts than DTE. Moreover, the process by-product, char, can simultaneously reduce 3.1 million tonnes of CO2 emissions while used as coal substitute. Yield of antiviral bio-liquid extremely exceed commercial disinfectant with just 1% wheat straw utilisation, which meet the demand of processing solid waste. Further, their costs are significantly lower than commercial disinfectant s. Therefore, the antiviral bio-liquid produced from agricultural straw can meet the needs of preventing the spread of SARS-CoV-2 from solid waste to humans to control the epidemic and resume the sustainable development of society.


Subject(s)
COVID-19
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.03.20028423

ABSTRACT

Background Rapid spread of SARS-CoV-2 in Wuhan prompted heightened surveillance in Shenzhen and elsewhere in China. The resulting data provide a rare opportunity to measure key metrics of disease course, transmission, and the impact of control. Methods The Shenzhen CDC identified 391 SARS-CoV-2 cases from January 14 to February 12, 2020 and 1286 close contacts. We compare cases identified through symptomatic surveillance and contact tracing, and estimate the time from symptom onset to confirmation, isolation, and hospitalization. We estimate metrics of disease transmission and analyze factors influencing transmission risk. Findings Cases were older than the general population (mean age 45) and balanced between males (187) and females (204). Ninety-one percent had mild or moderate clinical severity at initial assessment. Three have died, 225 have recovered (median time to recovery is 21 days). Cases were isolated on average 4.6 days after developing symptoms; contact tracing reduced this by 1.9 days. Household contacts and those travelling with a case where at higher risk of infection (ORs 6 and 7) than other close contacts. The household secondary attack rate was 15%, and children were as likely to be infected as adults. The observed reproductive number was 0.4, with a mean serial interval of 6.3 days. Interpretation Our data on cases as well as their infected and uninfected close contacts provide key insights into SARS-CoV-2 epidemiology. This work shows that heightened surveillance and isolation, particularly contact tracing, reduces the time cases are infectious in the community, thereby reducing R. Its overall impact, however, is uncertain and highly dependent on the number of asymptomatic cases. We further show that children are at similar risk of infection as the general population, though less likely to have severe symptoms; hence should be considered in analyses of transmission and control.


Subject(s)
Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL