Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 14(12):2754, 2022.
Article in English | MDPI | ID: covidwho-2155317

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a member of the genera alphacoronavirus, causes acute watery diarrhea and dehydration in suckling piglets and results in enormous economic losses in the swine industry worldwide. Identification and characterization of different cell lines are not only invaluable for PEDV entry and replication studies but also important for the development of various types of biological pharmaceuticals against PEDV. In this study, we present an approach to identify suitable permissive cell lines for PEDV research. Human cell lines were screened for a high correlation coefficient with the established PEDV infection model Huh7 based on RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE). Experimentally testing permissiveness towards PEDV infection, three highly permissive human cell lines, HepG2, Hep3B217, and SNU387 were identified. The replication kinetics of PEDV in HepG2, Hep3B217, and SNU387 cells were similar to that in Vero and Huh7 cells. Additionally, the transcriptomes analysis showed robust induction of transcripts associated with the innate immune in response to PEDV infection in all three cell lines, including hundreds of inflammatory cytokine and interferon genes. Moreover, the expression of inflammatory cytokines and interferons were confirmed by qPCR assay. Our findings indicate that HepG2, Hep3B217, and SNU387 are suitable cell lines for PEDV replication and innate immune response studies.

2.
J Virol ; 96(22): e0155522, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2097923

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , Heterogeneous-Nuclear Ribonucleoprotein K , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Antiviral Agents , Chlorocebus aethiops , Coronavirus Infections/veterinary , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Interferons , Myeloid Differentiation Factor 88 , Nucleocapsid Proteins/physiology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Ubiquitin-Protein Ligases , Vero Cells , Interferon Type I/immunology
3.
Vet Microbiol ; 273: 109544, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2028561

ABSTRACT

Autophagy-related 4B (ATG4B) is found to exert a vital function in viral replication, although the mechanism through which ATG4B activates type-I IFN signaling to hinder viral replication remains to be explained, so far. The current work revealed that ATG4B was downregulated in porcine epidemic diarrhea virus (PEDV)-infected LLC-PK1 cells. In addition, ATG4B overexpression inhibited PEDV replication in both Vero cells and LLC-PK1 cells. On the contrary, ATG4B knockdown facilitated PEDV replication. Moreover, ATG4B was observed to hinder PEDV replication by activating type-I IFN signaling. Further detailed analysis revealed that the ATG4B protein targeted and upregulated the TRAF3 protein to induce IFN expression via the TRAF3-pTBK1-pIRF3 pathway. The above data revealed a novel mechanism underlying the ATG4B-mediated viral restriction, thereby providing novel possibilities for preventing and controlling PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/genetics , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/genetics , Vero Cells , Virus Replication
4.
J Biol Chem ; 298(8): 102190, 2022 08.
Article in English | MEDLINE | ID: covidwho-2015572

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and dehydration in pigs and leads to great economic losses in the commercial swine industry. However, the underlying molecular mechanisms of host response to viral infection remain unclear. In the present study, we investigated a novel mechanism by which RALY, a member of the heterogeneous nuclear ribonucleoprotein family, significantly promotes the degradation of the PEDV nucleocapsid (N) protein to inhibit viral replication. Furthermore, we identified an interaction between RALY and the E3 ubiquitin ligase MARCH8 (membrane-associated RING-CH 8), as well as the cargo receptor NDP52 (nuclear dot protein 52 kDa), suggesting that RALY could suppress PEDV replication by degrading the viral N protein through a RALY-MARCH8-NDP52-autophagosome pathway. Collectively, these results suggest a preventive role of RALY against PEDV infection via the autophagy pathway and open up the possibility of inducing RALY in vivo as an effective prophylactic and preventive treatment for PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Chlorocebus aethiops , Coronavirus Infections/veterinary , Nucleocapsid Proteins , Porcine epidemic diarrhea virus/physiology , Ribonucleoproteins , Swine , Vero Cells , Virus Replication
5.
Front Immunol ; 13: 984448, 2022.
Article in English | MEDLINE | ID: covidwho-1987499

ABSTRACT

Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host's innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.


Subject(s)
Interferon Type I , Porcine epidemic diarrhea virus , Animals , Cell Line , Signal Transduction , Swine , Toll-Like Receptors
6.
J Virol ; 96(13): e0061822, 2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1962091

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Subject(s)
Coronavirus Infections , Interferon Type I , Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Transcription Factors , Animals , Antiviral Agents , Cell Line , Chlorocebus aethiops , Coronavirus Infections/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , TNF Receptor-Associated Factor 3 , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Vero Cells
7.
Virus Res ; 319: 198876, 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-1956367

ABSTRACT

Influenza a virus exploits host machinery to benefit its replication in host cells. Knowledge of host factors reveals the complicated interaction and provides potential targets for antiviral treatment. Here, instead of the traditional proteomic analysis, we employed a 4D label free proteomic method to identify cellular factors in A549 cells treated with avian H9N2 virus. We observed that 425 proteins were upregulated and 502 proteins were downregulated. Western blotting and quantitative real-time PCR results showed that the zinc-finger CCHC-type containing protein 3 (ZCCHC3) levels were markedly induced by H9N2 infection. Transient expression assay showed that ZCCHC3 expression decreased NP protein levels and viral titers, whereas knockdown of ZCCHC3 enhanced viral growth. Specifically, ZCCHC3 promoted the expression of IFN-ß, leading to the increased transcription of IFN downstream antiviral factors. Surprisingly, viral NS1 protein was able to antagonize the antiviral effect of ZCCHC3 by downregulating IFN-ß. Eventually, we observed that chicken finger CCCH-type containing protein 3, named ZC3H3, could also suppress the replication of H9N2 virus and the coronavirus-infectious bronchitis virus (IBV) in DF-1 cells. Together, our results showed the cellular proteomic response to H9N2 infection and identified ZCCHC3 as a novel antiviral factor against H9N2 infection, contributing to the understanding of host-virus interaction.


Subject(s)
Influenza A Virus, H9N2 Subtype , Virus Diseases , Antiviral Agents , Humans , Interferon-beta/genetics , Proteomics , Viral Proteins , Virus Replication , Zinc
8.
J Virol ; 96(10): e0007022, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1832352

ABSTRACT

In global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the trans-active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication. The current work aimed to detect whether and how TARDBP influences PEDV replication. Our data demonstrated that PEDV replication was significantly suppressed by TARDBP, regulated by KLF16, which targeted its promoter. We observed that through the proteasomal and autophagic degradation pathway, TARDBP inhibited PEDV replication via the binding as well as degradation of PEDV-encoded nucleocapsid (N) protein. Moreover, we found that TARDBP promoted autophagic degradation of N protein via interacting with MARCHF8, an E3 ubiquitin ligase, as well as NDP52, a cargo receptor. We also showed that TARDBP promoted host antiviral innate immune response by inducing interferon (IFN) expression through the MyD88-TRAF3-IRF3 pathway during PEDV infection. In conclusion, these data revealed a new antiviral role of TARDBP, effectively suppressing PEDV replication through degrading virus N protein via the proteasomal and autophagic degradation pathway and activating type I IFN signaling via upregulating the expression of MyD88. IMPORTANCE PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection. However, the virus has evolved plenty of strategies with the purpose of limiting IFN-I production and autophagy processes. Here, we identified that TARDBP expression was downregulated via the transcription factor KLF16 during PEDV infection. TARDBP could inhibit PEDV replication through the combination as well as degradation of PEDV-encoded nucleocapsid (N) protein via proteasomal and autophagic degradation pathways and promoted host antiviral innate immune response by inducing IFN expression through the MyD88-TRAF3-IRF3 pathway. In sum, our data identify a novel antiviral function of TARDBP and provide a better grasp of the innate immune response and protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , DNA-Binding Proteins , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Coronavirus Infections/veterinary , DNA-Binding Proteins/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Myeloid Differentiation Factor 88/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , RNA/metabolism , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/metabolism
9.
Microbiome ; 10(1): 60, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1789144

ABSTRACT

BACKGROUND: Wild birds may harbor and transmit viruses that are potentially pathogenic to humans, domestic animals, and other wildlife. RESULTS: Using the viral metagenomic approach, we investigated the virome of cloacal swab specimens collected from 3182 birds (the majority of them wild species) consisting of > 87 different species in 10 different orders within the Aves classes. The virus diversity in wild birds was higher than that in breeding birds. We acquired 707 viral genomes from 18 defined families and 4 unclassified virus groups, with 265 virus genomes sharing < 60% protein sequence identities with their best matches in GenBank comprising new virus families, genera, or species. RNA viruses containing the conserved RdRp domain with no phylogenetic affinity to currently defined virus families existed in different bird species. Genomes of the astrovirus, picornavirus, coronavirus, calicivirus, parvovirus, circovirus, retrovirus, and adenovirus families which include known avian pathogens were fully characterized. Putative cross-species transmissions were observed with viruses in wild birds showing > 95% amino acid sequence identity to previously reported viruses in domestic poultry. Genomic recombination was observed for some genomes showing discordant phylogenies based on structural and non-structural regions. Mapping the next-generation sequencing (NGS) data respectively against the 707 genomes revealed that these viruses showed distribution pattern differences among birds with different habitats (breeding or wild), orders, and sampling sites but no significant differences between birds with different behavioral features (migratory and resident). CONCLUSIONS: The existence of a highly diverse virome highlights the challenges in elucidating the evolution, etiology, and ecology of viruses in wild birds. Video Abstract.


Subject(s)
RNA Viruses , Viruses , Animals , Animals, Wild , Birds , Cloaca , Phylogeny , RNA Viruses/genetics , Virome/genetics , Viruses/genetics
10.
Front Microbiol ; 13: 865336, 2022.
Article in English | MEDLINE | ID: covidwho-1775717

ABSTRACT

A reliable and reproducible model in vitro for swine enteric coronaviruses infection would be intestinal models that support virus replication and can be long-term cultured and manipulated experimentally. Here, we designed a robust long-term culture system for porcine intestinal organoids from the intestinal crypt or single LGR5+ stem cell by combining previously defined insights into the growth requirements of the intestinal epithelium of humans. We showed that long-term cultured swine intestinal organoids were expanded in vitro for more than 6 months and maintained the potential to differentiate into different types of cells. These organoids were successfully infected with porcine enteric coronavirus, including porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), and were capable of supporting virus replication and progeny release. RNA-seq analysis showed robust induction of transcripts associated with antiviral signaling in response to enteric coronavirus infection, including hundreds of interferon-stimulated genes and cytokines. Moreover, gene set enrichment analysis indicated that PEDV infection could suppress the immune response in organoids. This 3D intestinal organoid model offers a long-term, renewable resource for investigating porcine intestinal infections with various pathogens.

11.
Microbiol Spectr ; 9(2): e0090821, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1452921

ABSTRACT

Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.


Subject(s)
Autophagy/physiology , Blood Proteins/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus/growth & development , Poly(A)-Binding Proteins/metabolism , Virus Replication/physiology , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Infectious bronchitis virus/growth & development , Murine hepatitis virus/growth & development , Nuclear Proteins/metabolism , Porcine epidemic diarrhea virus/growth & development , Proteolysis , Sp1 Transcription Factor/metabolism , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells
12.
Virol J ; 17(1): 46, 2020 04 03.
Article in English | MEDLINE | ID: covidwho-827237

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) infection causes an acute enteric tract infectious disease characterized by vomiting, anorexia, dehydration, weight loss and high mortality in neonatal piglets. During PEDV infection, the spike protein (S) is a major virion structural protein interacting with receptors and inducing neutralizing antibodies. However, the neutralizing B-cell epitopes within PEDV S protein have not been well studied. METHODS: To accurately identify the important immunodominant region of S1, the purified truncated S1 proteins (SA, SB, SC, SD and SE) were used to immunize BALB/c mice to prepare polyclonal antibodies. The antisera titers were determined by indirect ELISA, western blot and IFA after four immunizations to find the important immunodominant region of S1, and then purified the immunodominant region of S1 protein and immunized mice to generate the special antibodies, and then used recombinant peptides to determine the B-cell epitopes of monoclonal antibodies. RESULTS: Five antisera of recombinant proteins of the spike protein region of PEDV were generated and we found that only the polyclonal antibody against part of the S1 region (signed as SE protein, residues 666-789) could recognize the native PEDV. Purified SE protein was used to immunize BALB/c mice and generate mAb 2E10. Pepscan of the SE protein demonstrated that SE16 (722SSTFNSTREL731) is the minimal linear epitope required for reactivity with the mAb 2E10. Further investigation indicated that the epitope SE16 was localized on the surface of PEDV S protein in the 3D structure. CONCLUSIONS: A mAb 2E10 that is specifically bound to PEDV was generated and identified a specific linear B-cell epitope (SE16, 722SSTFNSTREL731) of the mAb. The epitope region of PEDV S1 localized in the different regions in comparison with the earlier identified epitopes. These findings enhance the understanding of the PEDV spike protein structure for vaccine design and provide a potential use for developing diagnostic methods to detect PEDV.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Chlorocebus aethiops , Female , Mice , Mice, Inbred BALB C , Porcine epidemic diarrhea virus/chemistry , Vero Cells
13.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: covidwho-824860

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen that affects the pig industry, is a highly genetically diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus have not been completely elucidated. In this study, comparative analyses of all available genomic sequences of North American (NA)-type PRRSVs (n = 355, including 138 PRRSV genomes sequenced in this study) in China and the United States during 2014-2018 revealed a high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and the GP2 to GP3 regions. Lineage 1 (L1) PRRSV was found to be susceptible to recombination among PRRSVs both in China and the United States. The recombinant major parent between the 1991-2013 data and the 2014-2018 data showed a trend from complex to simple. The major recombination pattern changed from an L8 to L1 backbone during 2014-2018 for Chinese PRRSVs, whereas L1 was always the major backbone for US PRRSVs. Intralineage recombination hot spots were not as concentrated as interlineage recombination hot spots. In the two main clades with differential diversity in L1, NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, NADC34-like PRRSVs have been relatively stable in population genetic diversity for years. Systematic analyses of insertion and deletion (indel) polymorphisms of NSP2 divided PRRSVs into 25 patterns, which could generate novel references for the classification of PRRSVs. The results of this study contribute to a deeper understanding of the recombination of PRRSVs and indicate the need for coordinated epidemiological investigations among countries.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine diseases. However, the phylogenetic and genomic recombination properties of the PRRS virus (PRRSV) have not been completely elucidated. In this study, we systematically compared differences in the lineage distribution, recombination, NSP2 polymorphisms, and evolutionary dynamics between North American (NA)-type PRRSVs in China and in the United States. Strikingly, we found high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and in the GP2 to GP3 region. Also, intralineage recombination hot spots were scattered across the genome between Chinese and US strains. Furthermore, we proposed novel methods based on NSP2 indel patterns for the classification of PRRSVs. Evolutionary dynamics analysis revealed that NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, suggesting that a dominant population may occur and cause an outbreak. Our findings offer important insights into the recombination of PRRSVs and suggest the need for coordinated international epidemiological investigations.


Subject(s)
Polymorphism, Genetic , Porcine respiratory and reproductive syndrome virus/genetics , Recombination, Genetic , Viral Proteins/genetics , Animals , China/epidemiology , Phylogeography , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine Reproductive and Respiratory Syndrome/genetics , Swine , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL