Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Infect ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1914623

ABSTRACT

BACKGROUND: Procalcitonin (PCT) and C-Reactive Protein (CRP) are useful biomarkers to differentiate bacterial from viral or fungal infections, although the association between them and co-infection or mortality in COVID-19 remains unclear. METHODS: The study represents a retrospective cohort study of patients admitted for COVID-19 pneumonia to 84 ICUs from ten countries between (March 2020-January 2021). Primary outcome was to determine whether PCT or CRP at admission could predict community-acquired bacterial respiratory co-infection (BC) and its added clinical value by determining the best discriminating cut-off values. Secondary outcome was to investigate its association with mortality. To evaluate the main outcome, a binary logistic regression was performed. The area under the curve evaluated diagnostic performance for BC prediction. RESULTS: 4635 patients were included, 7.6% fulfilled BC diagnosis. PCT (0.25[IQR 0.1-0.7] versus 0.20[IQR 0.1-0.5]ng/mL, p<0.001) and CRP (14.8[IQR 8.2-23.8] versus 13.3 [7-21.7]mg/dL, p=0.01) were higher in BC group. Neither PCT nor CRP were independently associated with BC and both had a poor ability to predict BC (AUC for PCT 0.56, for CRP 0.54). Baseline values of PCT<0.3ng/mL, could be helpful to rule out BC (negative predictive value 91.1%) and PCT≥0.50ng/mL was associated with ICU mortality (OR 1.5,p<0.001). CONCLUSIONS: These biomarkers at ICU admission led to a poor ability to predict BC among patients with COVID-19 pneumonia. Baseline values of PCT<0.3ng/mL may be useful to rule out BC, providing clinicians a valuable tool to guide antibiotic stewardship and allowing the unjustified overuse of antibiotics observed during the pandemic, additionally PCT≥0.50ng/mL might predict worsening outcomes.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337888

ABSTRACT

Background: Optimal time to intubate patients with SARS-CoV-2 pneumonia is controversial. Whereas some authors recommend trying noninvasive respiratory support before intubate, others argue that delaying intubation can cause patient-self-induced lung injury and worsen the prognosis. We hypothesized that delayed intubation would increase the risk mortality in COVID-19 patients. Methods: This preplanned retrospective observational study used prospectively collected data from adult patients with COVID-19 and respiratory failure admitted to 73 intensive care units between February 2020 and March 2021. Patients with limitations on life support and those with missing data were excluded. We collected demographic, laboratory, clinical variables and outcomes. Intubation was classified as 1) Very early: before or at ICU admission;2) Early: < 24 hours after ICU admission;or 3) Late: ≥24 hours after ICU admission. We compared the early group versus those intubated late, using chi-square tests for categorical variables and the Mann-Whitney U for continuous variables. To assess the relationship between early versus late intubation and mortality, we used multivariable binary logistic regression. Statistical significance was set at p<0.05. Results: We included 4198 patients [median age, 63 (54‒71) years;70.8% male;median SOFA score, 4 (3‒7);median APACHE score, 13 (10‒18)], and median PaO 2 /FiO 2 , 131 (100‒190)];intubation was very early in 2024 (48.2%) patients, early in 928 (22.1%), and late in 441 (10.5%). ICU mortality was 30.2% and median ICU stay was 14 (7‒28) days. Although patients in the late group were younger [62 vs. 64, respectively, p<0.05] and had less severe disease [APACHE II (13 vs. 14, respectively, p<0.05) and SOFA (3 vs. 4, respectively, p<0.05) scores], and higher PaO2/FiO 2 at admission (116 vs. 100, respectively, p<0.05), mortality was higher in the late group than in the early group (36.9% vs. 31.6%, p<0.05). Late intubation was independently associated with mortality (OR1.83;95%CI 1.35‒2.47). Conclusions: Delaying intubation beyond the first 24 hours of admission in patients with COVID-19 pneumonia increases the risk of mortality. Trial registration clinical-Trial.gov (NCT 04948242)

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320148

ABSTRACT

Background: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Methods: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 Intensive Care Units(ICU) in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. Results: : The database included a total of 2,022 patients (mean age 64[IQR5-71] years, 1423(70.4%) male, median APACHE II score (13[IQR10-17]) and SOFA score (5[IQR3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A(mild) phenotype (537;26.7%) included older age (<65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623,30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C(severe) phenotype was the most common (857;42.5%) and was characterized by the interplay of older age (>65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. Conclusion: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice .

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317390

ABSTRACT

Background: The steroids are currently used as standard treatment for severe COVID-19. However, the evidence is weak. Our aim is to determine if the use of corticosteroids was associated with Intensive Care Unit (ICU) mortality among whole population and pre-specified clinical phenotypes. Methods: A secondary analysis derived from multicenter, observational study of adult critically ill patients with confirmed COVID-19 disease admitted to 63 ICUs in Spain. Three phenotypes were derived by non-supervised clustering analysis from whole population and classified as (A: severe, B: critical and C: life-threatening). The primary outcome was ICU mortality. We performed a Multivariate analysis after propensity score full matching (PS), Cox proportional hazards (CPH), Cox covariate time interaction (TIR), Weighted Cox Regression (WCR) and Fine-Gray analysis(sHR) to assess the impact of corticosteroids on ICU mortality according to the whole population and distinctive patient clinical phenotypes. Results: : A total of 2,017 patients were analyzed, 1171(58%) with corticosteroids. After PS, corticosteroids were shown not to be associated with ICU mortality (OR:1.0,95%CI:0.98-1.15). Corticosteroids were administered in 298/537(55.5%) patients of “A” phenotype and their use was not associated with ICU mortality (HR=0.85[0.55-1.33]). A total of 338/623(54.2%) patients in “B” phenotype received corticosteroids. The CPH (HR =0.65 [0.46-0.91]) and TIR regression (1- 25 day tHR=0.56[0.39-0.82] and >25 days tHR=1.53[1.03-7.12]) showed a biphasic effect of corticosteroids due to proportional assumption violation. No effect of corticosteroids on ICU mortality was observed when WCR was performed (wHR=0.72[0.49-1.05]). Finally, 535/857(62.4%) patients in “C” phenotype received corticosteroids. The CPH (HR=0.73[0.63-0.98]) and TIR regression (1- 25 day tHR=0.69[ 0.53-0.89] and >25 days tHR=1.30[ 1.14-3.25]) showed a biphasic effect of corticosteroids and proportional assumption violation. However, wHR (0.75[0.58-0.98]) and sHR (0.79[0.63-0.98]) suggest a protective effect of corticosteroids on ICU mortality. Conclusion: Our finding warns against the widespread use of corticosteroids in all critically ill patients with COVID-19 at moderate-high dose. Only patients with the highest severity could benefit from steroid treatment although this effect on clinical outcome was minimized during ICU stay.

5.
Ann Intensive Care ; 11(1): 159, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1538089

ABSTRACT

BACKGROUND: Some unanswered questions persist regarding the effectiveness of corticosteroids for severe coronavirus disease 2019 (COVID-19) patients. We aimed to assess the clinical effect of corticosteroids on intensive care unit (ICU) mortality among mechanically ventilated COVID-19-associated acute respiratory distress syndrome (ARDS) patients. METHODS: This was a retrospective study of prospectively collected data conducted in 70 ICUs (68 Spanish, one Andorran, one Irish), including mechanically ventilated COVID-19-associated ARDS patients admitted between February 6 and September 20, 2020. Individuals who received corticosteroids for refractory shock were excluded. Patients exposed to corticosteroids at admission were matched with patients without corticosteroids through propensity score matching. Primary outcome was all-cause ICU mortality. Secondary outcomes were to compare in-hospital mortality, ventilator-free days at 28 days, respiratory superinfection and length of stay between patients with corticosteroids and those without corticosteroids. We performed survival analysis accounting for competing risks and subgroup sensitivity analysis. RESULTS: We included 1835 mechanically ventilated COVID-19-associated ARDS, of whom 1117 (60.9%) received corticosteroids. After propensity score matching, ICU mortality did not differ between patients treated with corticosteroids and untreated patients (33.8% vs. 30.9%; p = 0.28). In survival analysis, corticosteroid treatment at ICU admission was associated with short-term survival benefit (HR 0.53; 95% CI 0.39-0.72), although beyond the 17th day of admission, this effect switched and there was an increased ICU mortality (long-term HR 1.68; 95% CI 1.16-2.45). The sensitivity analysis reinforced the results. Subgroups of age < 60 years, severe ARDS and corticosteroids plus tocilizumab could have greatest benefit from corticosteroids as short-term decreased ICU mortality without long-term negative effects were observed. Larger length of stay was observed with corticosteroids among non-survivors both in the ICU and in hospital. There were no significant differences for the remaining secondary outcomes. CONCLUSIONS: Our results suggest that corticosteroid treatment for mechanically ventilated COVID-19-associated ARDS had a biphasic time-dependent effect on ICU mortality. Specific subgroups showed clear effect on improving survival with corticosteroid use. Therefore, further research is required to identify treatment-responsive subgroups among the mechanically ventilated COVID-19-associated ARDS patients.

6.
Lancet Reg Health Eur ; 11: 100243, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1500123

ABSTRACT

BACKGROUND: It is unclear whether the changes in critical care throughout the pandemic have improved the outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the intensive care units (ICUs). METHODS: We conducted a retrospective cohort study in adults with COVID-19 pneumonia admitted to 73 ICUs from Spain, Andorra and Ireland between February 2020 and March 2021. The first wave corresponded with the period from February 2020 to June 2020, whereas the second/third waves occurred from July 2020 to March 2021. The primary outcome was ICU mortality between study periods. Mortality predictors and differences in mortality between COVID-19 waves were identified using logistic regression. FINDINGS: As of March 2021, the participating ICUs had included 3795 COVID-19 pneumonia patients, 2479 (65·3%) and 1316 (34·7%) belonging to the first and second/third waves, respectively. Illness severity scores predicting mortality were lower in the second/third waves compared with the first wave according with the Acute Physiology and Chronic Health Evaluation system (median APACHE II score 12 [IQR 9-16] vs 14 [IQR 10-19]) and the organ failure assessment score (median SOFA 4 [3-6] vs 5 [3-7], p<0·001). The need of invasive mechanical ventilation was high (76·1%) during the whole study period. However, a significant increase in the use of high flow nasal cannula (48·7% vs 18·2%, p<0·001) was found in the second/third waves compared with the first surge. Significant changes on treatments prescribed were also observed, highlighting the remarkable increase on the use of corticosteroids to up to 95.9% in the second/third waves. A significant reduction on the use of tocilizumab was found during the study (first wave 28·9% vs second/third waves 6·2%, p<0·001), and a negligible administration of lopinavir/ritonavir, hydroxychloroquine, and interferon during the second/third waves compared with the first wave. Overall ICU mortality was 30·7% (n = 1166), without significant differences between study periods (first wave 31·7% vs second/third waves 28·8%, p = 0·06). No significant differences were found in ICU mortality between waves according to age subsets except for the subgroup of 61-75 years of age, in whom a reduced unadjusted ICU mortality was observed in the second/third waves (first 38·7% vs second/third 34·0%, p = 0·048). Non-survivors were older, with higher severity of the disease, had more comorbidities, and developed more complications. After adjusting for confounding factors through a multivariable analysis, no significant association was found between the COVID-19 waves and mortality (OR 0·81, 95% CI 0·64-1·03; p = 0·09). Ventilator-associated pneumonia rate increased significantly during the second/third waves and it was independently associated with ICU mortality (OR 1·48, 95% CI 1·19-1·85, p<0·001). Nevertheless, a significant reduction both in the ICU and hospital length of stay in survivors was observed during the second/third waves. INTERPRETATION: Despite substantial changes on supportive care and management, we did not find significant improvement on case-fatality rates among critical COVID-19 pneumonia patients. FUNDING: Ricardo Barri Casanovas Foundation (RBCF2020) and SEMICYUC.

7.
Med Intensiva ; 2021 Oct 26.
Article in Spanish | MEDLINE | ID: covidwho-1482804

ABSTRACT

OBJECTIVE: To determine if the use of corticosteroids was associated with Intensive Care Unit (ICU) mortality among whole population and pre-specified clinical phenotypes. DESIGN: A secondary analysis derived from multicenter, observational studySetting: Critical Care UnitsPatients: Adult critically ill patients with confirmed COVID-19 disease admitted to 63 ICUs in Spain. INTERVENTIONS: corticosteroids vs no corticosteroidsMain variables of interest: Three phenotypes were derived by non-supervised clustering analysis from whole population and classified as (A: severe, B: critical and C: life-threatening). We performed a Multivariate analysis after propensity optimal full matching (PS) for whole population and weighted Cox regression (HR) and Fine-Gray analysis(sHR) to assess the impact of corticosteroids on ICU mortality according to the whole population and distinctive patient clinical phenotypes. RESULTS: A total of 2,017 patients were analyzed, 1171(58%) with corticosteroids. After PS, corticosteroids were shown not to be associated with ICU mortality (OR:1.0,95%CI:0.98-1.15). Corticosteroids were administered in 298/537(55.5%) patients of "A" phenotype and their use was not associated with ICU mortality (HR=0.85[0.55-1.33]). A total of 338/623(54.2%) patients in "B" phenotype received corticosteroids. No effect of corticosteroids on ICU mortality was observed when HR was performed (0.72[0.49-1.05]). Finally, 535/857(62.4%) patients in "C" phenotype received corticosteroids. In this phenotype HR (0.75[0.58-0.98]) and sHR (0.79[0.63-0.98]) suggest a protective effect of corticosteroids on ICU mortality. CONCLUSION: Our finding warns against the widespread use of corticosteroids in all critically ill patients with COVID-19 at moderate dose. Only patients with the highest inflammatory levels could benefit from steroid treatment.

8.
Crit Care ; 25(1): 63, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1085162

ABSTRACT

BACKGROUND: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. METHODS: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. RESULTS: The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. CONCLUSION: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Aged , Cluster Analysis , Critical Illness , Female , Humans , Male , Middle Aged , Phenotype , Risk Assessment , Risk Factors , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL