Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Cell Rep Med ; 3(3): 100557, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1815271

ABSTRACT

Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1-2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines.


Subject(s)
COVID-19 , Interferon Type I , CD8-Positive T-Lymphocytes , Flow Cytometry , Humans , SARS-CoV-2/genetics
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-305945

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-up sampling to evaluate the quality and duration of immune memory. Methods: : We conducted a prospective study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swab (for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: : Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years;67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities;18% smokers;13% obesity;11% asthma;7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% CI 4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: : This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application <ns3:ext-link xmlns:ns4="http://www.w3.org/1999/xlink" ext-link-type="uri" ns4:href="https://covid-consortium.com/application-for-samples/">https://covid-consortium.com/application-for-samples/</ns3:ext-link>.

3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327683

ABSTRACT

Determining the protection an individual has to SARS-CoV-2 variants of concern (VoC) will be crucial for future immune surveillance and understanding the changing immune response. As further variants emerge, current serology tests are becoming less effective in reflecting neutralising capability of the immune system. A better measure of an evolving antigen-antibody immune response is needed. We describe a multiplexed, baited, targeted-proteomic assay for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. This enables a more sophisticated and informative characterisation of the antibody response to vaccination and infection against VoC. Using this assay, we detail different and specific responses to each variant by measuring several antibody classes, isotypes and associated complement binding. Furthermore, we describe how these proteins change using serum from individuals collected after infection, first and second dose vaccination. We show complete IgG1 test concordance with gold standard ELISA (r>0.8) and live virus neutralisation against Wuhan Hu-1, Alpha B.1.1.7, Beta B.1.351, and Delta B.1.617.1 variants (r>0.79). We also describe a wide degree of heterogeneity in the immunocomplex of individuals and a greater IgA response in those patients who had a previous infection. Significantly, our test points to an important role the complement system may play particularly against VoC. Where we observe altered Complement C1q association to the Delta VoC response and a stronger overall association with neutralising antibodies than IgG1. A detailed understanding of an individual’s antibody response could benefit public health immunosurveillance, vaccine design and inform vaccination dosing using a personalised medicine approach.

4.
Immunology ; 166(1): 68-77, 2022 05.
Article in English | MEDLINE | ID: covidwho-1685320

ABSTRACT

SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/genetics , COVID-19 Vaccines , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , SARS-CoV-2
5.
Science ; 375(6577): 183-192, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625678

ABSTRACT

The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.


Subject(s)
/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Female , Health Personnel , Humans , Longitudinal Studies , Male , Mutation , Phosphoproteins/immunology , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccine Potency
6.
Front Cardiovasc Med ; 8: 764599, 2021.
Article in English | MEDLINE | ID: covidwho-1598692

ABSTRACT

Background: Acute myocardial damage is common in severe COVID-19. Post-mortem studies have implicated microvascular thrombosis, with cardiovascular magnetic resonance (CMR) demonstrating a high prevalence of myocardial infarction and myocarditis-like scar. The microcirculatory sequelae are incompletely characterized. Perfusion CMR can quantify the stress myocardial blood flow (MBF) and identify its association with infarction and myocarditis. Objectives: To determine the impact of the severe hospitalized COVID-19 on global and regional myocardial perfusion in recovered patients. Methods: A case-control study of previously hospitalized, troponin-positive COVID-19 patients was undertaken. The results were compared with a propensity-matched, pre-COVID chest pain cohort (referred for clinical CMR; angiography subsequently demonstrating unobstructed coronary arteries) and 27 healthy volunteers (HV). The analysis used visual assessment for the regional perfusion defects and AI-based segmentation to derive the global and regional stress and rest MBF. Results: Ninety recovered post-COVID patients {median age 64 [interquartile range (IQR) 54-71] years, 83% male, 44% requiring the intensive care unit (ICU)} underwent adenosine-stress perfusion CMR at a median of 61 (IQR 29-146) days post-discharge. The mean left ventricular ejection fraction (LVEF) was 67 ± 10%; 10 (11%) with impaired LVEF. Fifty patients (56%) had late gadolinium enhancement (LGE); 15 (17%) had infarct-pattern, 31 (34%) had non-ischemic, and 4 (4.4%) had mixed pattern LGE. Thirty-two patients (36%) had adenosine-induced regional perfusion defects, 26 out of 32 with at least one segment without prior infarction. The global stress MBF in post-COVID patients was similar to the age-, sex- and co-morbidities of the matched controls (2.53 ± 0.77 vs. 2.52 ± 0.79 ml/g/min, p = 0.10), though lower than HV (3.00 ± 0.76 ml/g/min, p< 0.01). Conclusions: After severe hospitalized COVID-19 infection, patients who attended clinical ischemia testing had little evidence of significant microvascular disease at 2 months post-discharge. The high prevalence of regional inducible ischemia and/or infarction (nearly 40%) may suggest that occult coronary disease is an important putative mechanism for troponin elevation in this cohort. This should be considered hypothesis-generating for future studies which combine ischemia and anatomical assessment.

7.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
8.
Lancet Microbe ; 2(10): e508-e517, 2021 10.
Article in English | MEDLINE | ID: covidwho-1475189

ABSTRACT

BACKGROUND: We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing. METHODS: We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew's Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for "viral infection", "transcriptome", "biomarker", and "blood". We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity. FINDINGS: We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27-47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91-0·99), sensitivity 0·84 (0·70-0·93), and specificity 0·95 (0·85-0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91-0·95). INTERPRETATION: Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge. FUNDING: Barts Charity, Wellcome Trust, and National Institute of Health Research.


Subject(s)
COVID-19 , Adolescent , Adult , Biomarkers , COVID-19/diagnosis , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/genetics , Sensitivity and Specificity
10.
Lancet Microbe ; 2(10): e508-e517, 2021 10.
Article in English | MEDLINE | ID: covidwho-1305340

ABSTRACT

BACKGROUND: We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing. METHODS: We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew's Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for "viral infection", "transcriptome", "biomarker", and "blood". We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity. FINDINGS: We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27-47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91-0·99), sensitivity 0·84 (0·70-0·93), and specificity 0·95 (0·85-0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91-0·95). INTERPRETATION: Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge. FUNDING: Barts Charity, Wellcome Trust, and National Institute of Health Research.


Subject(s)
COVID-19 , Adolescent , Adult , Biomarkers , COVID-19/diagnosis , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/genetics , Sensitivity and Specificity
11.
JACC Cardiovasc Imaging ; 14(11): 2155-2166, 2021 11.
Article in English | MEDLINE | ID: covidwho-1225278

ABSTRACT

OBJECTIVES: The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome-coronavirus-2 infection. BACKGROUND: Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS: Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS: A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction <54%, septal T1 >1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS: Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.


Subject(s)
COVID-19 , Cardiovascular Abnormalities , Adolescent , Adult , Artificial Intelligence , Case-Control Studies , Contrast Media , Female , Gadolinium , Health Personnel , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Myocardium , Predictive Value of Tests , Prospective Studies , SARS-CoV-2 , Ventricular Function, Left , Young Adult
12.
Science ; 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1209815

ABSTRACT

SARS-CoV-2 vaccine rollout has coincided with the spread of variants of concern. We investigated if single dose vaccination, with or without prior infection, confers cross protective immunity to variants. We analyzed T and B cell responses after first dose vaccination with the Pfizer/BioNTech mRNA vaccine BNT162b2 in healthcare workers (HCW) followed longitudinally, with or without prior Wuhan-Hu-1 SARS-CoV-2 infection. After one dose, individuals with prior infection showed enhanced T cell immunity, antibody secreting memory B cell response to spike and neutralizing antibodies effective against B.1.1.7 and B.1.351. By comparison, HCW receiving one vaccine dose without prior infection showed reduced immunity against variants. B.1.1.7 and B.1.351 spike mutations resulted in increased, abrogated or unchanged T cell responses depending on human leukocyte antigen (HLA) polymorphisms. Single dose vaccination with BNT162b2 in the context of prior infection with a heterologous variant substantially enhances neutralizing antibody responses against variants.

13.
EClinicalMedicine ; 34: 100835, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1184950

ABSTRACT

BACKGROUND: : Healthcare workers (HCWs) have increased rates of SARS-CoV-2 infection compared with the general population. We aimed to understand ethnic differences in SARS-CoV-2 seropositivity among hospital healthcare workers depending on their hospital role, socioeconomic status, Covid-19 symptoms and basic demographics. METHODS: A prospective longitudinal observational cohort study. 1364 HCWs at five UK hospitals were studied with up to 16 weeks of symptom questionnaires and antibody testing (to both nucleocapsid and spike protein) during the first UK wave in five NHS hospitals between March 20 and July 10 2020. The main outcome measures were SARS-CoV-2 infection (seropositivity at any time-point) and symptoms. Registration number: NCT04318314. FINDINGS: 272 of 1364 HCWs (mean age 40.7 years, 72% female, 74% White, ≥6 samples per participant) seroconverted, reporting predominantly mild or no symptoms. Seropositivity was lower in Intensive Therapy Unit (ITU) workers (OR=0.44 95%CI 0.24, 0.77; p=0.0035). Seropositivity was higher in Black (compared to White) participants, independent of age, sex, role and index of multiple deprivation (OR=2.61 95%CI 1.47-4.62 p=0.0009). No association was seen between White HCWs and other minority ethnic groups. INTERPRETATION: In the UK first wave, Black ethnicity (but not other ethnicities) more than doubled HCWs likelihood of seropositivity, independent of age, sex, measured socio-economic factors and hospital role.

14.
EBioMedicine ; 65: 103259, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1116568

ABSTRACT

BACKGROUND: SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. METHODS: Healthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements. FINDINGS: A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r = 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r = 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). INTERPRETATION: Mild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. In mild infection, anti-S1 serology alone may underestimate incident infections. The mechanisms that underpin faster clearance and lower rates of sustained anti-S1 production may impact on the longevity of humoral immunity. FUNDING: Charitable donations via Barts Charity, Wellcome Trust, NIHR.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Phosphoproteins/immunology , Protein Domains/immunology
16.
Eur Heart J ; 42(19): 1866-1878, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1087735

ABSTRACT

BACKGROUND: Troponin elevation is common in hospitalized COVID-19 patients, but underlying aetiologies are ill-defined. We used multi-parametric cardiovascular magnetic resonance (CMR) to assess myocardial injury in recovered COVID-19 patients. METHODS AND RESULTS: One hundred and forty-eight patients (64 ± 12 years, 70% male) with severe COVID-19 infection [all requiring hospital admission, 48 (32%) requiring ventilatory support] and troponin elevation discharged from six hospitals underwent convalescent CMR (including adenosine stress perfusion if indicated) at median 68 days. Left ventricular (LV) function was normal in 89% (ejection fraction 67% ± 11%). Late gadolinium enhancement and/or ischaemia was found in 54% (80/148). This comprised myocarditis-like scar in 26% (39/148), infarction and/or ischaemia in 22% (32/148) and dual pathology in 6% (9/148). Myocarditis-like injury was limited to three or less myocardial segments in 88% (35/40) of cases with no associated LV dysfunction; of these, 30% had active myocarditis. Myocardial infarction was found in 19% (28/148) and inducible ischaemia in 26% (20/76) of those undergoing stress perfusion (including 7 with both infarction and ischaemia). Of patients with ischaemic injury pattern, 66% (27/41) had no past history of coronary disease. There was no evidence of diffuse fibrosis or oedema in the remote myocardium (T1: COVID-19 patients 1033 ± 41 ms vs. matched controls 1028 ± 35 ms; T2: COVID-19 46 ± 3 ms vs. matched controls 47 ± 3 ms). CONCLUSIONS: During convalescence after severe COVID-19 infection with troponin elevation, myocarditis-like injury can be encountered, with limited extent and minimal functional consequence. In a proportion of patients, there is evidence of possible ongoing localized inflammation. A quarter of patients had ischaemic heart disease, of which two-thirds had no previous history. Whether these observed findings represent pre-existing clinically silent disease or de novo COVID-19-related changes remain undetermined. Diffuse oedema or fibrosis was not detected.


Subject(s)
COVID-19 , Myocarditis , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Male , Myocarditis/diagnostic imaging , Myocardium , Predictive Value of Tests , SARS-CoV-2 , Troponin , Ventricular Function, Left
18.
Sci Immunol ; 5(54)2020 12 23.
Article in English | MEDLINE | ID: covidwho-999191

ABSTRACT

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Asymptomatic Infections , COVID-19/immunology , T-Lymphocytes/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Cross-Sectional Studies , Humans , SARS-CoV-2/immunology
20.
ProQuest Central; 2020.
Preprint in English | ProQuest Central | ID: ppcovidwho-2091

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-usampling to evaluate the quality and duration of immune memory. Methods: We conducted a prospective observational study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swa(for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years;67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities;18% smokers;13% obesity;11% asthma;7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% C4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application https://covid-consortium.com/application-for-samples/.

SELECTION OF CITATIONS
SEARCH DETAIL