Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(5): e0245031, 2021.
Article in English | MEDLINE | ID: covidwho-1314324

ABSTRACT

SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID-19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID-19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The "Biobanque québécoise de la COVID-19" (BQC19) is a pan-provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID-19.


Subject(s)
Biological Specimen Banks/organization & administration , COVID-19/pathology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Information Dissemination/methods , Pandemics , Quebec/epidemiology , SARS-CoV-2/isolation & purification
2.
PLoS One ; 16(5): e0245031, 2021.
Article in English | MEDLINE | ID: covidwho-1234580

ABSTRACT

SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID-19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID-19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The "Biobanque québécoise de la COVID-19" (BQC19) is a pan-provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID-19.


Subject(s)
Biological Specimen Banks/organization & administration , COVID-19/pathology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Information Dissemination/methods , Pandemics , Quebec/epidemiology , SARS-CoV-2/isolation & purification
3.
PLoS Comput Biol ; 17(3): e1008810, 2021 03.
Article in English | MEDLINE | ID: covidwho-1121603

ABSTRACT

Abnormal coagulation and an increased risk of thrombosis are features of severe COVID-19, with parallels proposed with hemophagocytic lymphohistiocytosis (HLH), a life-threating condition associated with hyperinflammation. The presence of HLH was described in severely ill patients during the H1N1 influenza epidemic, presenting with pulmonary vascular thrombosis. We tested the hypothesis that genes causing primary HLH regulate pathways linking pulmonary thromboembolism to the presence of SARS-CoV-2 using novel network-informed computational algorithms. This approach led to the identification of Neutrophils Extracellular Traps (NETs) as plausible mediators of vascular thrombosis in severe COVID-19 in children and adults. Taken together, the network-informed analysis led us to propose the following model: the release of NETs in response to inflammatory signals acting in concert with SARS-CoV-2 damage the endothelium and direct platelet-activation promoting abnormal coagulation leading to serious complications of COVID-19. The underlying hypothesis is that genetic and/or environmental conditions that favor the release of NETs may predispose individuals to thrombotic complications of COVID-19 due to an increase risk of abnormal coagulation. This would be a common pathogenic mechanism in conditions including autoimmune/infectious diseases, hematologic and metabolic disorders.


Subject(s)
COVID-19/complications , COVID-19/genetics , Extracellular Traps/genetics , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/genetics , Models, Biological , SARS-CoV-2/genetics , Thrombosis/etiology , Thrombosis/genetics , Algorithms , Cell Degranulation/genetics , Computational Biology , Gene Expression Regulation , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Pandemics , Protein Interaction Maps , Pulmonary Embolism/etiology , Pulmonary Embolism/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...