Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Lancet Reg Health West Pac ; 19: 100346, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587063
2.
Clin Infect Dis ; 73(11): e4154-e4165, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559099

ABSTRACT

BACKGROUND: Children and older adults with coronavirus disease 2019 (COVID-19) display a distinct spectrum of disease severity yet the risk factors aren't well understood. We sought to examine the expression pattern of angiotensin-converting enzyme 2 (ACE2), the cell-entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the role of lung progenitor cells in children and older patients. METHODS: We retrospectively analyzed clinical features in a cohort of 299 patients with COVID-19. The expression and distribution of ACE2 and lung progenitor cells were systematically examined using a combination of public single-cell RNA-seq data sets, lung biopsies, and ex vivo infection of lung tissues with SARS-CoV-2 pseudovirus in children and older adults. We also followed up patients who had recovered from COVID-19. RESULTS: Compared with children, older patients (>50 years.) were more likely to develop into serious pneumonia with reduced lymphocytes and aberrant inflammatory response (P = .001). The expression level of ACE2 and lung progenitor cell markers were generally decreased in older patients. Notably, ACE2 positive cells were mainly distributed in the alveolar region, including SFTPC positive cells, but rarely in airway regions in the older adults (P < .01). The follow-up of discharged patients revealed a prolonged recovery from pneumonia in the older (P < .025). CONCLUSIONS: Compared to children, ACE2 positive cells are generally decreased in older adults and mainly presented in the lower pulmonary tract. The lung progenitor cells are also decreased. These risk factors may impact disease severity and recovery from pneumonia caused by SARS-Cov-2 infection in older patients.

3.
PLoS One ; 16(2): e0246732, 2021.
Article in English | MEDLINE | ID: covidwho-1079372

ABSTRACT

BACKGROUND: A high proportion of COVID-19 patients were reported to have cardiac involvements. Data pertaining to cardiac sequalae is of urgent importance to define subsequent cardiac surveillance. METHODS: We performed a systematic cardiac screening for 97 consecutive COVID-19 survivors including electrocardiogram (ECG), echocardiography, serum troponin and NT-proBNP assay 1-4 weeks after hospital discharge. Treadmill exercise test and cardiac magnetic resonance imaging (CMR) were performed according to initial screening results. RESULTS: The mean age was 46.5 ± 18.6 years; 53.6% were men. All were classified with non-severe disease without overt cardiac manifestations and did not require intensive care. Median hospitalization stay was 17 days and median duration from discharge to screening was 11 days. Cardiac abnormalities were detected in 42.3% including sinus bradycardia (29.9%), newly detected T-wave abnormality (8.2%), elevated troponin level (6.2%), newly detected atrial fibrillation (1.0%), and newly detected left ventricular systolic dysfunction with elevated NT-proBNP level (1.0%). Significant sinus bradycardia with heart rate below 50 bpm was detected in 7.2% COVID-19 survivors, which appeared to be self-limiting and recovered over time. For COVID-19 survivors with persistent elevation of troponin level after discharge or newly detected T wave abnormality, echocardiography and CMR did not reveal any evidence of infarct, myocarditis, or left ventricular systolic dysfunction. CONCLUSION: Cardiac abnormality is common amongst COVID-survivors with mild disease, which is mostly self-limiting. Nonetheless, cardiac surveillance in form of ECG and/or serum biomarkers may be advisable to detect more severe cardiac involvement including atrial fibrillation and left ventricular dysfunction.


Subject(s)
COVID-19/physiopathology , Heart Diseases/physiopathology , Adult , Aged , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Electrocardiography , Female , Heart Diseases/blood , Heart Diseases/epidemiology , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , SARS-CoV-2/isolation & purification , Survival Analysis , Survivors , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/physiopathology
4.
Theranostics ; 11(5): 2170-2181, 2021.
Article in English | MEDLINE | ID: covidwho-1016389

ABSTRACT

Introduction: An increasing number of children with severe coronavirus disease 2019 (COVID-19) is being reported, yet the spectrum of disease severity and expression patterns of angiotensin-converting enzyme 2 (ACE2) in children at different developmental stages are largely unknow. Methods: We analysed clinical features in a cohort of 173 children with COVID-19 (0-15 yrs.-old) between January 22, 2020 and March 15, 2020. We systematically examined the expression and distribution of ACE2 in different developmental stages of children by using a combination of children's lung biopsies, pluripotent stem cell-derived lung cells, RNA-sequencing profiles, and ex vivo SARS-CoV-2 pseudoviral infections. Results: It revealed that infants (< 1yrs.-old), with a weaker potency of immune response, are more vulnerable to develop pneumonia whereas older children (> 1 yrs.-old) are more resistant to lung injury. The expression levels of ACE2 however do not vary by age in children's lung. ACE2 is notably expressed not only in Alveolar Type II (AT II) cells, but also in SOX9 positive lung progenitor cells detected in both pluripotent stem cell derivatives and infants' lungs. The ACE2+SOX9+ cells are readily infected by SARS-CoV-2 pseudovirus and the numbers of the double positive cells are significantly decreased in older children. Conclusions: Infants (< 1 yrs.-old) with SARS-CoV-2 infection are more vulnerable to lung injuries. ACE2 expression in multiple types of lung cells including SOX9 positive progenitor cells, in cooperation with an unestablished immune system, could be risk factors contributing to vulnerability of infants with COVID-19. There is a need to continue monitoring lung development in young children who have recovered from SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/cytology , Stem Cells/metabolism , Adolescent , Biopsy , Child , Child, Preschool , Female , Humans , Immune System , Infant , Infant, Newborn , Lung/virology , Male , RNA-Seq , Risk Factors , SARS-CoV-2 , SOX9 Transcription Factor/metabolism , Single-Cell Analysis , Stem Cells/virology
7.
Circ J ; 84(11): 2027-2031, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-795948

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with myocardial injury, but there is a paucity of experimental platforms for the condition.Methods and Results:Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected by SARS-CoV-2 for 3 days ceased beating and exhibited cytopathogenic changes with reduced viability. Active viral replication was evidenced by an increase in supernatant SARS-CoV-2 and the presence of SARS-CoV-2 nucleocaspid protein within hiPSC-CMs. Expressions of BNP, CXCL1, CXCL2, IL-6, IL-8 and TNF-α were upregulated, while ACE2 was downregulated. CONCLUSIONS: Our hiPSC-CM-based in-vitro SARS-CoV-2 myocarditis model recapitulated the cytopathogenic effects and cytokine/chemokine response. It could be exploited as a drug screening platform.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/complications , Induced Pluripotent Stem Cells/virology , Myocarditis/complications , Myocytes, Cardiac/virology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Cell Survival , Cells, Cultured , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cytokines/metabolism , Cytopathogenic Effect, Viral , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Myocarditis/metabolism , Myocarditis/virology , Myocytes, Cardiac/metabolism , Nucleocapsid Proteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Virus Replication
8.
Res Sq ; 2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-729814

ABSTRACT

Dysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19) from mild to severe stages including fatality, with pro-inflammatory macrophages as one of the main mediators of lung hyper-inflammation. Therefore, there is an urgent need to better understand the interactions among SARS-CoV-2 permissive cells, macrophage, and the SARS-CoV-2 virus, thereby offering important insights into new therapeutic strategies. Here, we used directed differentiation of human pluripotent stem cells (hPSCs) to establish a lung and macrophage co-culture system and model the host-pathogen interaction and immune response caused by SARS-CoV-2 infection. Among the hPSC-derived lung cells, alveolar type II and ciliated cells are the major cell populations expressing the viral receptor ACE2 and co-effector TMPRSS2, and both were highly permissive to viral infection. We found that alternatively polarized macrophages (M2) and classically polarized macrophages (M1) had similar inhibitory effects on SARS-CoV-2 infection. However, only M1 macrophages significantly up-regulated inflammatory factors including IL-6 and IL-18, inhibiting growth and enhancing apoptosis of lung cells. Inhibiting viral entry into target cells using an ACE2 blocking antibody enhanced the activity of M2 macrophages, resulting in nearly complete clearance of virus and protection of lung cells. These results suggest a potential therapeutic strategy, in that by blocking viral entrance to target cells while boosting anti-inflammatory action of macrophages at an early stage of infection, M2 macrophages can eliminate SARS-CoV-2, while sparing lung cells and suppressing the dysfunctional hyper-inflammatory response mediated by M1 macrophages.

9.
Catheter Cardiovasc Interv ; 97(2): E194-E197, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-176061

ABSTRACT

OBJECTIVE: To determine whether COVID-19 may adversely affect outcome of myocardial infarction (MI) patients in Hong Kong, China. BACKGROUND: The COVID-19 pandemic has infected thousands of people and placed enormous stress on healthcare system. Apart from being an infectious disease, it may affect human behavior and healthcare resource allocation which potentially cause treatment delay in MI. METHODS: This was a single center cross-sectional observational study. From November 1, 2019 to March 31, 2020, we compared outcome of patients admitted for acute ST-elevation MI (STEMI) and non-ST elevation MI (NSTEMI) before (group 1) and after (group 2) January 25, 2020 which was the date when Hong Kong hospitals launched emergency response measures to combat COVID-19. RESULTS: There was a reduction in daily emergency room attendance since January 25, 2020 (group 1,327/day vs. group 2,231/day) and 149 patients with diagnosis of MI were included into analysis (group 1 N = 85 vs. group 2 N = 64). For STEMI, patients in group 2 tended to have longer symptom-to-first medical contact time and more presented out of revascularization window (group 1 27.8 vs. group 2 33%). The primary composite outcome of in-hospital death, cardiogenic shock, sustained ventricular tachycardia or fibrillation (VT/VF) and use of mechanical circulatory support (MCS) was significantly worse in group 2 (14.1 vs. 29.7%, p = .02). CONCLUSIONS: More MI patients during COVID-19 outbreak had complicated in-hospital course and worse outcomes. Besides direct infectious complications, cardiology community has to acknowledge the indirect effect of communicable disease on our patients and system of care.


Subject(s)
COVID-19/epidemiology , Myocardial Infarction/mortality , Myocardial Infarction/therapy , Aged , Aged, 80 and over , COVID-19/therapy , Cross-Sectional Studies , Female , Hong Kong , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Myocardial Infarction/diagnosis , Time-to-Treatment , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...