Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329809

ABSTRACT

The high number of mutations in the Omicron variant of SARS-CoV-2 cause its immune escape when compared to the earlier variants of concern (VOC). At least three vaccine doses are required for the induction of Omicron neutralizing antibodies and further reducing the risk for hospitalization. However, most of the studies have focused on the immediate response after the booster vaccination while the duration of immune response is less known. We here studied longitudinal serum samples from the vaccinated individuals up to three months after their third dose of the BNT162b2 vaccine for their capacity to produce protective antibodies and T cell responses to Wuhan and Omicron variants. After the second dose, the antibody levels to the unmutated spike protein were significantly decreased at three months, and only 4% of the individuals were able to inhibit Omicron spike interaction compared to 47%, 38%, and 14% of individuals inhibiting wild-type, delta, and beta variants spike protein. Nine months after the second vaccination, the antibody levels were similar to the levels before the first dose and none of the sera inhibited SARS-CoV-2 wild-type or any of the three VOCs. The booster dose remarkably increased antibody levels and their ability to inhibit all variants. Three months after the booster the antibody levels and the inhibition activity were trending lower but still up and not significantly different from their peak values at two weeks after the third dose. Although responsiveness towards mutated spike peptides was lost in less than 20 % of vaccinated individuals, the wild-type spike-specific CD4+ and CD8+ memory T cells were still present at three months after the booster vaccination in the majority of studied individuals. Our data show that two doses of the BNT62b2 vaccine are not sufficient to protect against the Omicron variant, however, the spike-specific antibodies and T cell responses are strongly elicited and well maintained three months after the third vaccination dose.

2.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295564

ABSTRACT

Background Although the SARS-CoV-2 mRNA vaccines have proven high efficacy, limited data exists on the duration of immune responses and their relation to age and side effects. Methods We studied the antibody and memory T cell responses to Spike protein after the two-dose Comirnaty mRNA vaccine in 122 volunteers up to 3 months and correlated the findings with age and side effects. Findings We found a robust antibody response after the second vaccination dose. However, the antibody levels declined at 6 and 12 weeks postvaccination, indicating a waning of the immune response. Regardless, the average levels remained higher compared to pre-vaccination or in COVID-19 convalescent individuals. The antibodies efficiently blocked ACE2 receptor binding to Spike protein of four variants of concern at one week but this was decreased at three months, in particular with B.1.351 and P1 isolates. 87% of individuals developed Spike-specific memory T cell responses, which were lower in individuals with increased proportions of immunosenescent CD8+ TEMRA cells. We found a decreased vaccination efficacy but fewer adverse events in older individuals, suggesting a detrimental impact of age on outcome. Interpretation The mRNA vaccine induces a strong antibody response to four variants at 1 week postvaccination but decreases thereafter, in particular among older individuals. T cell responses, although detectable in the majority, were lower in individuals with immunosenescence. The deterioration of vaccine response needs to be monitored to define the optimal time for the revaccination. Funding The Estonian Research Council, Icosagen Cell Factory, and SYNLAB Estonia. Research in context Evidence before this study The first studies addressing the immune responses in older individuals after the administration of SARS-CoV-2 mRNA vaccines have been published. We searched PubMed and medRxiv for publications on the immune response of SARS-CoV-2-mRNA vaccines, published in English, using the search terms “SARS-CoV-2”, “COVID-19”, “vaccine response”, “mRNA vaccine”, up to May 20th, 2021. To date, most mRNA vaccine response studies have not been peer-reviewed, and data on the dynamics of antibody response, role of age and side effects on SARS-CoV-2-mRNA vaccines in real vaccination situations is limited. Some studies have found a weaker immune response in older individuals after the first dose and these have been measured at a relatively short period (within one to two weeks) after the first dose but little longer-term evidence exists on the postvaccination antibody persistence. Added value of this study In this study, we assessed the antibody response up to three months after the full vaccination with Pfizer-BioNTech Comirnaty mRNA vaccine in 122 individuals. Our findings show strong Spike RBD antibody responses one week after the second dose with the capacity to block ACE2-Spike protein interaction, however, the antibodies declined significantly at three months after the second dose. The inhibition of ACE2-Spike interaction was weaker with South African (B.1.351) and Brazilian (P.1) than with Wuhan and UK (B.1.1.7) SARS-CoV-2 isolates. At three months 87% of vaccinated individuals developed either CD4+ or CD8+ T cell responses. Those negative for Spike-specific T cell response also tended to have lower Spike-specific antibody levels. In addition, CD4+ T cell response was decreased among vaccinated individuals with elevated levels of senescent CD8+ TEMRA cells. We found a weaker antibody response and faster waning of antibodies in older vaccinated individuals, which correlated with fewer side effects at the time of vaccinations. Implications of all the available evidence Our results show that two doses of Pfizer-BioNTech Comirnaty mRNA vaccine induce a strong antibody and T cell responses to Spike RBD region but the antibody levels are declined at three months after the second dose. Nevertheless, even at three months, the anti-Spike RBD antibody levels tay significantly higher than at prevaccination, after the first dose of vaccine, or in Covid-19 postinfection. Our findings implicate older individuals to have fewer vaccination adverse effects and weaker immune response after the vaccination and point to the need for more individualized vaccination protocols, in particular among older people.

3.
Front Immunol ; 12: 709759, 2021.
Article in English | MEDLINE | ID: covidwho-1450807

ABSTRACT

The clinical features of SARS-CoV-2 infection range from asymptomatic to severe disease with life-threatening complications. Understanding the persistence of immune responses in asymptomatic individuals merit special attention because of their importance in controlling the spread of the infections. We here studied the antibody and T cell responses, and a wide range of inflammation markers, in 56 SARS-CoV-2 antibody-positive individuals, identified by a population screen after the first wave of SARS-CoV-2 infection. These, mostly asymptomatic individuals, were reanalyzed 7-8 months after their infection together with 115 age-matched seronegative controls. We found that 7-8 months after the infection their antibodies to SARS-CoV-2 Nucleocapsid (N) protein declined whereas we found no decrease in the antibodies to Spike receptor-binding domain (S-RBD) when compared to the findings at seropositivity identification. In contrast to antibodies to N protein, the antibodies to S-RBD correlated with the viral neutralization capacity and with CD4+ T cell responses as measured by antigen-specific upregulation of CD137 and CD69 markers. Unexpectedly we found the asymptomatic antibody-positive individuals to have increased serum levels of S100A12, TGF-alpha, IL18, and OSM, the markers of activated macrophages-monocytes, suggesting long-term persistent inflammatory effect associated with the viral infection in asymptomatic individuals. Our results support the evidence for the long-term persistence of the inflammation process and the need for post-infection clinical monitoring of SARS-CoV-2 infected asymptomatic individuals.


Subject(s)
Antibodies, Viral/blood , Asymptomatic Infections , CD4-Positive T-Lymphocytes/immunology , COVID-19/pathology , Inflammation Mediators/blood , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4 Lymphocyte Count , Coronavirus Nucleocapsid Proteins/immunology , Humans , Inflammation/immunology , Interleukin-18/blood , Macrophages/immunology , Monocytes/immunology , Oncostatin M/blood , Phosphoproteins/immunology , Protein Domains/immunology , S100A12 Protein/blood , Spike Glycoprotein, Coronavirus/immunology , Transforming Growth Factor alpha/blood
4.
Lancet Reg Health Eur ; 10: 100208, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1404792

ABSTRACT

BACKGROUND: SARS-CoV-2 mRNA vaccines have proven high efficacy, however, limited data exists on the duration of immune responses and their relation to age and side effects. METHODS: We studied the antibody and memory T cell responses after the two-dose BNT162b2 vaccine in 122 volunteers up to 6 months and correlated the findings with age and side effects. FINDINGS: We found a robust antibody response to Spike protein after the second dose. However, the antibody levels declined at 12 weeks and 6 months post-vaccination, indicating a waning of the immune response over time. At 6 months after the second dose, the Spike antibody levels were similar to the levels in persons vaccinated with one dose or in COVID-19 convalescent individuals. The antibodies efficiently blocked ACE2 receptor binding to SARS-CoV-2 Spike protein of five variants of concern at one week but this was decreased at three months. 87% of individuals developed Spike-specific memory T cell responses, which were lower in individuals with increased proportions of immunosenescent CD8+ TEMRA cells. We found antibody response to correlate negatively with age and positively with the total score of vaccination side effects. INTERPRETATION: The mRNA vaccine induces a strong antibody response to SARS-CoV-2 and five VOCs at 1 week post-vaccination that decreases thereafter. T cell responses, although detectable in the majority, were lower in individuals with higher T cell immunosenescence. The deterioration of vaccine response suggests the need to monitor for the potential booster vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL