Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Virol ; 96(1): e0151121, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1621995

ABSTRACT

The development of mouse models for coronavirus disease 2019 (COVID-19) has enabled testing of vaccines and therapeutics and defining aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. SARS-CoV-2 disease is severe in K18 transgenic mice (K18-hACE2 Tg) expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, under an ectopic cytokeratin promoter, with high levels of infection measured in the lung and brain. Here, we evaluated SARS-CoV-2 infection in hACE2 knock-in (KI) mice that express hACE2 under an endogenous promoter in place of murine ACE2 (mACE2). Intranasal inoculation of hACE2 KI mice with SARS-CoV-2 WA1/2020 resulted in substantial viral replication within the upper and lower respiratory tracts with limited spread to extrapulmonary organs. However, SARS-CoV-2-infected hACE2 KI mice did not lose weight and developed limited pathology. Moreover, no significant differences in viral burden were observed in hACE2 KI mice infected with B.1.1.7 or B.1.351 variants compared to the WA1/2020 strain. Because the entry mechanisms of SARS-CoV-2 in mice remain uncertain, we evaluated the impact of the naturally occurring, mouse-adapting N501Y mutation by comparing infection of hACE2 KI, K18-hACE2 Tg, ACE2-deficient, and wild-type C57BL/6 mice. The N501Y mutation minimally affected SARS-CoV-2 infection in hACE2 KI mice but was required for viral replication in wild-type C57BL/6 mice in a mACE2-dependent manner and augmented pathogenesis in the K18-hACE2 Tg mice. Thus, the N501Y mutation likely enhances interactions with mACE2 or hACE2 in vivo. Overall, our study highlights the hACE2 KI mice as a model of mild SARS-CoV-2 infection and disease and clarifies the requirement of the N501Y mutation in mice. IMPORTANCE Mouse models of SARS-CoV-2 pathogenesis have facilitated the rapid evaluation of countermeasures. While the first generation of models developed pneumonia and severe disease after SARS-CoV-2 infection, they relied on ectopic expression of supraphysiological levels of human ACE2 (hACE2). This has raised issues with their relevance to humans, as the hACE2 receptor shows a more restricted expression pattern in the respiratory tract. Here, we evaluated SARS-CoV-2 infection and disease with viruses containing or lacking a key mouse-adapting mutation in the spike gene in hACE2 KI mice, which express hACE2 under an endogenous promoter in place of murine ACE2. While infection of hACE2 KI mice with multiple strains of SARS-CoV-2 including variants of concern resulted in viral replication within the upper and lower respiratory tracts, the animals did not sustain severe lung injury. Thus, hACE2 KI mice serve as a model of mild infection with both ancestral and emerging SARS-CoV-2 variant strains.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Lung/virology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , Disease Models, Animal , Gene Expression , Gene Knock-In Techniques , Humans , Inflammation , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Viral Load , Virus Replication
2.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750493

ABSTRACT

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2)(1-3). Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in both the lung and brain leading to lethality. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the lung, and no clinical signs of infection with a challenge dose of 10 (4) plaque forming units. The K18-hACE2 model provides a stringent model for testing the ability of vaccines and antivirals to protect against disease, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.

3.
Nature ; 599(7884): 283-289, 2021 11.
Article in English | MEDLINE | ID: covidwho-1404888

ABSTRACT

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Subject(s)
COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cellular Senescence/drug effects , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , COVID-19/complications , Cell Line , Cricetinae , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , Female , Humans , Male , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thrombosis/complications , Thrombosis/immunology , Thrombosis/metabolism
4.
Science ; 371(6532): 926-931, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1048642

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration = 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited toxicity in cell culture. Through the use of a drug-resistant mutant, we show that the antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2 infection with a reduction of viral replication in the lungs by two orders of magnitude using prophylactic treatment. Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Depsipeptides/pharmacology , Peptide Elongation Factor 1/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19/virology , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/genetics , Depsipeptides/administration & dosage , Depsipeptides/therapeutic use , Drug Evaluation, Preclinical , Female , HEK293 Cells , Humans , Lung/virology , Mice, Inbred C57BL , Mutation , Peptides, Cyclic , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Replication/drug effects
5.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-887237

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Subject(s)
COVID-19/metabolism , Interferons/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Binding Sites , Chlorocebus aethiops , HEK293 Cells , Humans , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , Protein Binding , Signal Transduction , Vero Cells
6.
Emerg Microbes Infect ; 9(1): 2433-2445, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-872909

ABSTRACT

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.


Subject(s)
Betacoronavirus/growth & development , Coronavirus Infections/pathology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , SARS Virus/growth & development , Virus Replication/genetics , A549 Cells , Adenoviridae/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , COVID-19 , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Pandemics , SARS Virus/metabolism , SARS-CoV-2 , Vero Cells , Virus Attachment
7.
bioRxiv ; 2020 Jul 06.
Article in English | MEDLINE | ID: covidwho-665205

ABSTRACT

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2)(1-3). Due to amino acid differences between murine and hACE2, inbred mouse strains fail to support high titer viral replication of SARS-CoV-2 virus. Therefore, a number of transgenic and knock-in mouse models, as well as viral vector-mediated hACE2 delivery systems have been developed. Here we compared the K18-hACE2 transgenic model to adenovirus-mediated delivery of hACE2 to the mouse lung. We show that K18-hACE2 mice replicate virus to high titers in both the lung and brain leading to lethality. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the lung, and no clinical signs of infection with a challenge dose of 10 4 plaque forming units. The K18-hACE2 model provides a stringent model for testing the ability of vaccines and antivirals to protect against disease, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.

SELECTION OF CITATIONS
SEARCH DETAIL