Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infect Disord Drug Targets ; 22(5): 12-21, 2022.
Article in English | MEDLINE | ID: covidwho-1606600

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is a highly contagious viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a catastrophic effect on the world's demographics, resulting in more than 3.8 million deaths worldwide and establishing itself as the most serious global health crisis since the 1918 influenza pandemic. Several questions remain unanswered regarding the effects of COVID-19 disease during pregnancy. Although most infections are mild in high-risk populations, the severe disease frequently leads to intubation, intensive care unit admission, and, in some cases, death. Hormonal and physiological changes in the immune and respiratory systems, cardiovascular function, and coagulation may affect the progression of COVID-19 disease in pregnancy. However, the consequences of coronavirus infection on implantation, fetal growth and development, labor, and newborn health have yet to be determined, and, consequently, a coordinated global effort is needed in this respect. Principles of management concerning COVID-19 in pregnancy include early isolation, aggressive infection control procedures, oxygen therapy, avoidance of fluid overload, consideration of empiric antibiotics (secondary to bacterial infection risk), laboratory testing for the virus and co-infection, fetal and uterine contraction monitoring, prevention, and / or treatment of thromboembolism early mechanical ventilation for progressive respiratory failure, individualized delivery planning, and a team-based approach with multispecialty consultations. This review focuses on COVID-19 during pregnancy, its management, and the area where further investigations are needed to reduce the risk to mothers and their newborns.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Global Health , Humans , Infant, Newborn , Pandemics/prevention & control , Pregnancy , SARS-CoV-2
2.
Biology (Basel) ; 10(8)2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1360719

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a contemporary coronavirus, has impacted global economic activity and has a high transmission rate. As a result of the virus's severe medical effects, developing effective vaccinations is vital. Plant-derived metabolites have been discovered as potential SARS-CoV-2 inhibitors. The SARS-CoV-2 main protease (Mpro) is a target for therapeutic research because of its highly conserved protein sequence. Gas chromatography-mass spectrometry (GC-MS) and molecular docking were used to screen 34 compounds identified from Leucas zeylanica for potential inhibitory activity against the SARS-CoV-2 Mpro. In addition, prime molecular mechanics-generalized Born surface area (MM-GBSA) was used to screen the compound dataset using a molecular dynamics simulation. From molecular docking analysis, 26 compounds were capable of interaction with the SARS-CoV-2 Mpro, while three compounds, namely 11-oxa-dispiro[4.0.4.1]undecan-1-ol (-5.755 kcal/mol), azetidin-2-one 3,3-dimethyl-4-(1-aminoethyl) (-5.39 kcal/mol), and lorazepam, 2TMS derivative (-5.246 kcal/mol), exhibited the highest docking scores. These three ligands were assessed by MM-GBSA, which revealed that they bind with the necessary Mpro amino acids in the catalytic groove to cause protein inhibition, including Ser144, Cys145, and His41. The molecular dynamics simulation confirmed the complex rigidity and stability of the docked ligand-Mpro complexes based on the analysis of mean radical variations, root-mean-square fluctuations, solvent-accessible surface area, radius of gyration, and hydrogen bond formation. The study of the postmolecular dynamics confirmation also confirmed that lorazepam, 11-oxa-dispiro[4.0.4.1]undecan-1-ol, and azetidin-2-one-3, 3-dimethyl-4-(1-aminoethyl) interact with similar Mpro binding pockets. The results of our computerized drug design approach may assist in the fight against SARS-CoV-2.

3.
Front Mol Biosci ; 8: 625391, 2021.
Article in English | MEDLINE | ID: covidwho-1268263

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first recognized in Wuhan in late 2019 and, since then, had spread globally, eventually culminating in the ongoing pandemic. As there is a lack of targeted therapeutics, there is certain opportunity for the scientific community to develop new drugs or vaccines against COVID-19 and so many synthetic bioactive compounds are undergoing clinical trials. In most of the countries, due to the broad therapeutic spectrum and minimal side effects, medicinal plants have been used widely throughout history as traditional healing remedy. Because of the unavailability of synthetic bioactive antiviral drugs, hence all possible efforts have been focused on the search for new drugs and alternative medicines from different herbal formulations. In recent times, it has been assured that the Mpro, also called 3CLpro, is the SARS-CoV-2 main protease enzyme responsible for viral reproduction and thereby impeding the host's immune response. As such, Mpro represents a highly specified target for drugs capable of inhibitory action against coronavirus disease 2019 (COVID-19). As there continue to be no clear options for the treatment of COVID-19, the identification of potential candidates has become a necessity. The present investigation focuses on the in silico pharmacological activity of Calotropis gigantea, a large shrub, as a potential option for COVID-19 Mpro inhibition and includes an ADME/T profile analysis of that ligand. For this study, with the help of gas chromatography-mass spectrometry analysis of C. gigantea methanolic leaf extract, a total of 30 bioactive compounds were selected. Our analyses unveiled the top four options that might turn out to be prospective anti-SARS-CoV-2 lead molecules; these warrant further exploration as well as possible application in processes of drug development to combat COVID-19.

4.
Molecules ; 25(17)2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-740497

ABSTRACT

A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Tinospora/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Discovery , Gas Chromatography-Mass Spectrometry , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Pandemics , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Pneumonia, Viral/drug therapy , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , SARS-CoV-2 , Substrate Specificity , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL