Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337046


Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 and autoimmune disorders, but they target different chemokines than those in COVID-19. Finally, monoclonal antibodies derived from COVID-19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID 19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential.

Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: covidwho-1661973


The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.

COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
Lancet Reg Health Eur ; 1: 100013, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-988714


BACKGROUND: Hospital healthcare workers (HCW), in particular those involved in the clinical care of COVID-19 cases, are presumably exposed to a higher risk of acquiring the disease than the general population. METHODS: Between April 16 and 30, 2020 we conducted a prospective, SARS-CoV-2 seroprevalence study in HCWs in Southern Switzerland. Participants were hospital personnel with varying COVID-19 exposure risk depending on job function and working site. They provided personal information (including age, sex, occupation, and medical history) and self-reported COVID-19 symptoms. Odds ratio (OR) of seropositivity to IgG antibodies was estimated by univariate and multivariate logistic regressions. FINDINGS: Among 4726 participants, IgG antibodies to SARS-CoV-2 were detected in 9.6% of the HCWs. Seropositivity was higher among HCWs working on COVID-19 wards (14.1% (11.9-16.5)) compared to other hospital areas at medium (10.7% (7.6-14.6)) or low risk exposure (7.3% (6.4-8.3)). OR for high vs. medium wards risk exposure was 1.42 (0.91-2.22), P = 0.119, and 1.98 (1.55-2.53), P<0.001 for high vs. low wards risk exposure. The same was for true for doctors and nurses (10.1% (9.0-11.3)) compared to other employees at medium (7.1% (4.8-10.0)) or low risk exposure (6.6% (5.0-8.4)). OR for high vs. medium profession risk exposure was 1.37 (0.89-2.11), P = 0.149, and 1.75 (1.28-2.40), P = 0.001 for high vs. low profession risk exposure. Moreover, seropositivity was higher among HCWs who had household exposure to COVID-19 cases compared to those without (18.7% (15.3-22.5) vs. 7.7% (6.9-8.6), OR 2.80 (2.14-3.67), P<0.001). INTERPRETATION: SARS-CoV-2 antibodies are detectable in up to 10% of HCWs from acute care hospitals in a region with high incidence of COVID-19 in the weeks preceding the study. HCWs with exposure to COVID-19 patients have only a slightly higher absolute risk of seropositivity compared to those without, suggesting that the use of PPE and other measures aiming at reducing nosocomial viral transmission are effective. Household contact with known COVID-19 cases represents the highest risk of seropositivity. FUNDING: Henry Krenter Foundation, Ente Ospedaliero Cantonale and Vir Biotechnology.