Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ann Intensive Care ; 12(1): 6, 2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1622259

ABSTRACT

BACKGROUND: Duration of invasive mechanical ventilation (IMV) prior to extracorporeal membrane oxygenation (ECMO) affects outcome in acute respiratory distress syndrome (ARDS). In coronavirus disease 2019 (COVID-19) related ARDS, the role of pre-ECMO IMV duration is unclear. This single-centre, retrospective study included critically ill adults treated with ECMO due to severe COVID-19-related ARDS between 01/2020 and 05/2021. The primary objective was to determine whether duration of IMV prior to ECMO cannulation influenced ICU mortality. RESULTS: During the study period, 101 patients (mean age 56 [SD ± 10] years; 70 [69%] men; median RESP score 2 [IQR 1-4]) were treated with ECMO for COVID-19. Sixty patients (59%) survived to ICU discharge. Median ICU length of stay was 31 [IQR 20.7-51] days, median ECMO duration was 16.4 [IQR 8.7-27.7] days, and median time from intubation to ECMO start was 7.7 [IQR 3.6-12.5] days. Fifty-three (52%) patients had a pre-ECMO IMV duration of > 7 days. Pre-ECMO IMV duration had no effect on survival (p = 0.95). No significant difference in survival was found when patients with a pre-ECMO IMV duration of < 7 days (< 10 days) were compared to ≥ 7 days (≥ 10 days) (p = 0.59 and p = 1.0). CONCLUSIONS: The role of prolonged pre-ECMO IMV duration as a contraindication for ECMO in patients with COVID-19-related ARDS should be scrutinised. Evaluation for ECMO should be assessed on an individual and patient-centred basis.

2.
Trials ; 22(1): 643, 2021 Sep 20.
Article in English | MEDLINE | ID: covidwho-1435265

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a complex clinical diagnosis with various possible etiologies. One common feature, however, is pulmonary permeability edema, which leads to an increased alveolar diffusion pathway and, subsequently, impaired oxygenation and decarboxylation. A novel inhaled peptide agent (AP301, solnatide) was shown to markedly reduce pulmonary edema in animal models of ARDS and to be safe to administer to healthy humans in a Phase I clinical trial. Here, we present the protocol for a Phase IIB clinical trial investigating the safety and possible future efficacy endpoints in ARDS patients. METHODS: This is a randomized, placebo-controlled, double-blind intervention study. Patients with moderate to severe ARDS in need of mechanical ventilation will be randomized to parallel groups receiving escalating doses of solnatide or placebo, respectively. Before advancing to a higher dose, a data safety monitoring board will investigate the data from previous patients for any indication of patient safety violations. The intervention (application of the investigational drug) takes places twice daily over the course of 7 days, ensued by a follow-up period of another 21 days. DISCUSSION: The patients to be included in this trial will be severely sick and in need of mechanical ventilation. The amount of data to be collected upon screening and during the course of the intervention phase is substantial and the potential timeframe for inclusion of any given patient is short. However, when prepared properly, adherence to this protocol will make for the acquisition of reliable data. Particular diligence needs to be exercised with respect to informed consent, because eligible patients will most likely be comatose and/or deeply sedated at the time of inclusion. TRIAL REGISTRATION: This trial was prospectively registered with the EU Clinical trials register (clinicaltrialsregister.eu). EudraCT Number: 2017-003855-47 .


Subject(s)
COVID-19 , Pulmonary Edema , Respiratory Distress Syndrome , Double-Blind Method , Edema , Humans , Peptides, Cyclic , Permeability , Pulmonary Edema/diagnosis , Pulmonary Edema/drug therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Treatment Outcome
3.
Wien Klin Wochenschr ; 132(21-22): 664-670, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1005888

ABSTRACT

Coronavirus disease 2019 (COVID-19) progresses mildly in most of the cases; however, about 5% of the patients develop a severe acute respiratory distress syndrome (ARDS). Of all COVID-19 patients 3% need intensive care treatment, which becomes a great challenge for anesthesiology and intensive care medicine, medically, hygienically and for technical safety requirements. For these reasons, only experienced medical and nursing staff in the smallest grouping possible should be assigned. For these team members, a consistent use of personal protective equipment (PPE) is essential.Due to the immense medical challenges, the following treatment guidelines were developed by the ÖGARI (Österreichische Gesellschaft für Anästhesiologie, Reanimation und Intensivmedizin), FASIM (Federation of Austrian Societies of Intensive Care Medicine) and ÖGIAIN (Österreichische Gesellschaft für Internistische und Allgemeine Intensivmedizin und Notfallmedizin).The recommendations given in this article are to be understood as short snapshots of the moment; all basic guidelines are works in progress and will be regularly updated as evidence levels, new study results and additional experience are gathered.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Austria , COVID-19 , Coronavirus Infections/therapy , Critical Care , Humans , Pneumonia, Viral/therapy , SARS-CoV-2
4.
Wien Klin Wochenschr ; 132(21-22): 671-676, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-996397

ABSTRACT

The pandemic from the SARS-CoV­2 virus is currently challenging healthcare systems all over the world. Maintaining appropriate staffing and resources in healthcare facilities is essential to guarantee a safe working environment for healthcare personnel and safe patient care. Extracorporeal membrane oxygenation (ECMO) represents a valuable therapeutic option in patients with severe heart or lung failure. Although only a limited proportion of COVID-19 patients develop respiratory or circulatory failure that is refractory to conventional treatment, it is of utmost importance to clearly define criteria for the use of ECMO in this steadily growing patient population. The ECMO working group of the Medical University of Vienna has established the following recommendations for ECMO support in COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections , Extracorporeal Membrane Oxygenation , Pandemics , Pneumonia, Viral , Aged , COVID-19 , Child , Humans , SARS-CoV-2
5.
Wien Klin Mag ; : 1-6, 2020 Jun 10.
Article in German | MEDLINE | ID: covidwho-592271

ABSTRACT

The pandemic from the SARS-CoV­2 Virus is currently challenging health care systems all over the world. Maintaining appropriate staffing and resources in healthcare facilities is essential to guarantee a safe work environment for healthcare personnel and safe patient care. Extracorporeal membrane oxygenation (ECMO) represents a valuable therapeutic option in patients with severe heart or lung failure. Although only a limited proportion of COVID-19 patients develops respiratory or circulatory failure that is refractory to conventional therapies, it is of utmost importance to clearly define criteria for the use of ECMOs in this steadily growing patient population. The ECMO working group of the Medical University of Vienna has established the following recommendations for ECMO support in COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...