Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Metab Brain Dis ; 2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1935848


Pain is one of the clinical manifestations that can vary from mild to severe symptoms in COVID-19 patients. Pain symptoms can be initiated by direct viral damage to the tissue or by indirect tissue injury followed by nociceptor sensitization. The most common types of pain that are reported to occur in COVID-19 patients are headache, myalgia, and chest pain. With more and more cases coming in the hospitals, many new and unique symptoms of pain are being reported. Testicular and abdominal pain are rare cases of pain that are also being reported and are associated with COVID-19. The SARS-CoV-2 virus has a high affinity for angiotensin-converting enzyme-2 receptor (ACE-2) which acts as an entry point for the virus. ACE-2/ Ang II/AT 1 receptor also participates directly in the transmission of pain signals from the dorsal horn of the spinal cord. It induces a series of complicated responses in the human body. Among which the cytokinetic storm and hypercoagulation are the most prominent pathways that mediate the sensitization of sensory neurons facilitating pain. The elevated immune response is also responsible for the activation of inflammatory lipid mediators such as COX-1 and COX-2 enzymes for the synthesis of prostaglandins (PGs). PG molecules especially PGE2 and PGD2 are involved in the pain transmission and are found to be elevated in COVID-19 patients. Though arachidonic acid pathway is one of the lesser discussed topics in COVID-19 pathophysiology, still it can be useful for explaining the unique and rarer symptoms of pain seen in COVID-19 patients. Understanding different pain pathways is very crucial for the management of pain and can help healthcare systems to end the current pandemic situation. We herein review the role of various molecules involved in the pain pathology of COVID-19.

J Biomol Struct Dyn ; 40(8): 3609-3625, 2022 05.
Article in English | MEDLINE | ID: covidwho-939480


COVID-19 pandemic has created a healthcare crisis across the world and has put human life under life-threatening circumstances. The recent discovery of the crystallized structure of the main protease (Mpro) from SARS-CoV-2 has provided an opportunity for utilizing computational tools as an effective method for drug discovery. Targeting viral replication has remained an effective strategy for drug development. Mpro of SARS-COV-2 is the key protein in viral replication as it is involved in the processing of polyproteins to various structural and nonstructural proteins. Thus, Mpro represents a key target for the inhibition of viral replication specifically for SARS-CoV-2. We have used a virtual screening strategy by targeting Mpro against a library of commercially available compounds to identify potential inhibitors. After initial identification of hits by molecular docking-based virtual screening further MM/GBSA, predictive ADME analysis, and molecular dynamics simulation were performed. The virtual screening resulted in the identification of twenty-five top scoring structurally diverse hits that have free energy of binding (ΔG) values in the range of -26-06 (for compound AO-854/10413043) to -59.81 Kcal/mol (for compound 329/06315047). Moreover, the top-scoring hits have favorable AMDE properties as calculated using in silico algorithms. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about the amino acid residues involved in binding. Overall, this study led to the identification of potential SARS-CoV-2 Mpro hit compounds with favorable pharmacokinetic properties. We believe that the outcome of this study can help to develop novel Mpro inhibitors to tackle this pandemic.Communicated by Ramaswamy H. Sarma.

COVID-19 , Molecular Dynamics Simulation , COVID-19/drug therapy , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2