Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biomedicines ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: covidwho-20236954

ABSTRACT

COVID-19 vaccines have been widely used to reduce the incidence and disease severity of COVID-19. Questions have lately been raised about the possibility of an association between COVID-19 vaccines and myocarditis, an inflammatory condition affecting the myocardium, or the middle layer of the heart. Myocarditis can be caused by infections, immune reactions, or toxic exposure. The incidence rate of myocarditis and pericarditis was calculated to be 5.98 instances per million COVID-19 vaccine doses delivered, which is less than half of the incidences after SARS-CoV-2 infection. Myocarditis rates in people aged 12 to 39 years are around 12.6 cases per million doses following the second dose of mRNA vaccination. Adolescent men are more likely than women to develop myocarditis after receiving mRNA vaccines. The objectives of this systematic review and meta-analysis are to find out how often myocarditis occurs after receiving the COVID-19 vaccine, as well as the risk factors and clinical repercussions of this condition. Nevertheless, the causal relationship between vaccination and myocarditis has been difficult to establish, and further research is required. It is also essential to distinguish between suggested cases of myocarditis and those confirmed by endomyocardial biopsy.

2.
Vaccines (Basel) ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: covidwho-20244100

ABSTRACT

Less than a year after the global emergence of the coronavirus SARS-CoV-2, a novel vaccine platform based on mRNA technology was introduced to the market. Globally, around 13.38 billion COVID-19 vaccine doses of diverse platforms have been administered. To date, 72.3% of the total population has been injected at least once with a COVID-19 vaccine. As the immunity provided by these vaccines rapidly wanes, their ability to prevent hospitalization and severe disease in individuals with comorbidities has recently been questioned, and increasing evidence has shown that, as with many other vaccines, they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Additionally, recent investigations have found abnormally high levels of IgG4 in people who were administered two or more injections of the mRNA vaccines. HIV, Malaria, and Pertussis vaccines have also been reported to induce higher-than-normal IgG4 synthesis. Overall, there are three critical factors determining the class switch to IgG4 antibodies: excessive antigen concentration, repeated vaccination, and the type of vaccine used. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. However, emerging evidence suggests that the reported increase in IgG4 levels detected after repeated vaccination with the mRNA vaccines may not be a protective mechanism; rather, it constitutes an immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. Increased IgG4 synthesis due to repeated mRNA vaccination with high antigen concentrations may also cause autoimmune diseases, and promote cancer growth and autoimmune myocarditis in susceptible individuals.

3.
Front Immunol ; 14: 1064459, 2023.
Article in English | MEDLINE | ID: covidwho-2313559

ABSTRACT

The newly emerged coronavirus (SARS-CoV-2) is virulent, contagious, and has rapidly gained many mutations, which makes it highly infectious and swiftly transmissible around the world. SARS-CoV-2 infects people of all ages and targets all body organs and their cellular compartments, starting from the respiratory system, where it shows many deleterious effects, to other tissues and organs. Systemic infection can lead to severe cases that require intensive intervention. Multiple approaches were elaborated, approved, and successfully used in the intervention of the SARS-CoV-2 infection. These approaches range from the utilization of single and/or mixed medications to specialized supportive devices. For critically ill COVID-19 patients with acute respiratory distress syndrome, both extracorporeal membrane oxygenation (ECMO) and hemadsorption are utilized in combination or individually to support and release the etiological factors responsible for the "cytokine storm" underlying this condition. The current report discusses hemadsorption devices that can be used as part of supportive treatment for the COVID-19-associated cytokine storm.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , COVID-19/therapy , SARS-CoV-2 , Cytokines
4.
J Cell Biochem ; 124(5): 656-673, 2023 05.
Article in English | MEDLINE | ID: covidwho-2314301

ABSTRACT

It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Prevalence
5.
J Biomol Struct Dyn ; : 1-10, 2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-2273461

ABSTRACT

Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.

6.
Expert Rev Vaccines ; 21(11): 1603-1620, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2254449

ABSTRACT

INTRODUCTION: Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED: The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION: In this pandemic, we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Pandemics/prevention & control , Vaccination
7.
Inflammation ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2251267

ABSTRACT

Hyper-transmissibility with decreased disease severity is a typical characteristic of the SARS-CoV-2 Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from December 15 to 31, 2021. We report that the pathogenicity of SARS-CoV-2 variants decreases in the order of Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order of Omicron > Gamma > Wuhan > Delta. The Omicron spike RBD shows lower pathogenicity but higher antigenicity than other variants. The reported decreased disease severity by the Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-γ and IL-4 induction efficacy. The mutations in the N protein are probably associated with this decreased IL-6 induction and human DDX21-mediated increased IL-4 production for Omicron. Due to the mutations, the stability of S, M, N, and E proteins decreases in the order of Omicron > Gamma > Delta > Wuhan. Although a stronger spike RBD-hACE2 binding of Omicron increases its transmissibility, the lowest stability of its spike protein makes spike RBD-hACE2 interaction weak for systemic infection and for causing severe disease. Finally, the highest instability of the Omicron E protein may also be associated with decreased viral maturation and low viral load, leading to less severe disease and faster recovery. Our findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants. This minimal genome-based method may be used for other similar viruses avoiding robust analysis.

8.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2252177

ABSTRACT

Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.


Subject(s)
Intrinsically Disordered Proteins , Virus Diseases , Humans , Organelles/metabolism , Intrinsically Disordered Proteins/metabolism , Viral Proteins/metabolism , Virus Diseases/metabolism , Eukaryota/metabolism
9.
Int J Biol Macromol ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2241050

ABSTRACT

One of the main obstacles in prevention and treatment of COVID-19 is the rapid evolution of the SARS-CoV-2 Spike protein. Given that Spike is the main target of common treatments of COVID-19, mutations occurring at this virulent factor can affect the effectiveness of treatments. The B.1.617.2 lineage of SARS-CoV-2, being characterized by many Spike mutations inside and outside of its receptor-binding domain (RBD), shows high infectivity and relative resistance to existing cures. Here, utilizing a wide range of computational biology approaches, such as immunoinformatics, molecular dynamics (MD), analysis of intrinsically disordered regions (IDRs), protein-protein interaction analyses, residue scanning, and free energy calculations, we examine the structural and biological attributes of the B.1.617.2 Spike protein. Furthermore, the antibody design protocol of Rosetta was implemented for evaluation the stability and affinity improvement of the Bamlanivimab (LY-CoV55) antibody, which is not capable of interactions with the B.1.617.2 Spike. We observed that the detected mutations in the Spike of the B1.617.2 variant of concern can cause extensive structural changes compatible with the described variation in immunogenicity, secondary and tertiary structure, oligomerization potency, Furin cleavability, and drug targetability. Compared to the Spike of Wuhan lineage, the B.1.617.2 Spike is more stable and binds to the Angiotensin-converting enzyme 2 (ACE2) with higher affinity.

10.
Prog Biophys Mol Biol ; 178: 32-49, 2023 03.
Article in English | MEDLINE | ID: covidwho-2239057

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Vaccines, Subunit , Knowledge
11.
Proteins ; 91(6): 798-806, 2023 06.
Article in English | MEDLINE | ID: covidwho-2173414

ABSTRACT

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to evolve carrying flexible amino acid substitutions in the spike protein's receptor binding domain (RBD). These substitutions modify the binding of the SARS-CoV-2 to human angiotensin-converting enzyme 2 (hACE2) receptor and have been implicated in altered host fitness, transmissibility, and efficacy against antibody therapeutics and vaccines. Reliably predicting the binding strength of SARS-CoV-2 variants RBD to hACE2 receptor and neutralizing antibodies (NAbs) can help assessing their fitness, and rapid deployment of effective antibody therapeutics, respectively. Here, we introduced a two-step computational framework with 3-fold validation that first identified dissociation constant as a reliable predictor of binding affinity in hetero- dimeric and trimeric protein complexes. The second step implements dissociation constant as descriptor of the binding strengths of SARS-CoV-2 variants RBD to hACE2 and NAbs. Then, we examined several variants of concerns (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron and demonstrated that these VOCs RBD bind to the hACE2 with enhanced affinity. Furthermore, the binding affinity of Omicron variant's RBD was reduced with majority of the RBD-directed NAbs, which is highly consistent with the experimental neutralization data. By studying the atomic contacts between RBD and NAbs, we revealed the molecular footprints of four NAbs (GH-12, P2B-1A1, Asarnow_3D11, and C118)-that may likely neutralize the recently emerged Omicron variant-facilitating enhanced binding affinity. Finally, our findings suggest a computational pathway that could aid researchers identify a range of current NAbs that may be effective against emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Consensus , Antibodies, Neutralizing
12.
Cell Signal ; 103: 110559, 2023 03.
Article in English | MEDLINE | ID: covidwho-2158569

ABSTRACT

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines/metabolism , Pandemics/prevention & control , Receptors, Virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
13.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2155319

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in the recent emergence of a highly divergent variant of concern (VOC) defined as Omicron or B.1.1.529. This VOC is of particular concern because it has the potential to evade most therapeutic antibodies and has undergone a sustained genetic evolution, resulting in the emergence of five distinct sub-lineages. However, the evolutionary dynamics of the initially identified Omicron BA.1 and BA.2 sub-lineages remain poorly understood. Herein, we combined Bayesian phylogenetic analysis, mutational profiling, and selection pressure analysis to track the virus's genetic changes that drive the early evolutionary dynamics of the Omicron. Based on the Omicron dataset chosen for the improved temporal signals and sampled globally between November 2021 and January 2022, the most recent common ancestor (tMRCA) and substitution rates for BA.1 were estimated to be that of 18 September 2021 (95% highest posterior density (HPD), 4 August-22 October 2021) and 1.435 × 10-3 (95% HPD = 1.021 × 10-3 - 1.869 × 10-3) substitution/site/year, respectively, whereas 3 November 2021 (95% highest posterior density (HPD) 26 September-28 November 2021) and 1.074 × 10-3 (95% HPD = 6.444 × 10-4 - 1.586 × 10-3) substitution/site/year were estimated for the BA.2 sub-lineage. The findings of this study suggest that the Omicron BA.1 and BA.2 sub-lineages originated independently and evolved over time. Furthermore, we identified multiple sites in the spike protein undergoing continued diversifying selection that may alter the neutralization profile of BA.1. This study sheds light on the ongoing global genomic surveillance and Bayesian molecular dating analyses to better understand the evolutionary dynamics of the virus and, as a result, mitigate the impact of emerging variants on public health.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Bayes Theorem , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
14.
Curr Res Struct Biol ; 4: 349-355, 2022.
Article in English | MEDLINE | ID: covidwho-2122411

ABSTRACT

SARS-CoV-2 is the infectious agent responsible for the coronavirus disease since 2019, which is the viral pneumonia pandemic worldwide. The structural knowledge on SARS-CoV-2 is rather limited. These limitations are also applicable to one of the most attractive drug targets of SARS-CoV-2 proteins - namely, main protease Mpro, also known as 3C-like protease (3CLpro). This protein is crucial for the processing of the viral polyproteins and plays crucial roles in interfering viral replication and transcription. In fact, although the crystal structure of this protein with an inhibitor was solved, Mpro conformational dynamics in aqueous solution is usually studied by molecular dynamics simulations without special sampling techniques. We conducted replica exchange molecular dynamics simulations on Mpro in water and report the dynamic structures of Mpro in an aqueous environment including root mean square fluctuations, secondary structure properties, radius of gyration, and end-to-end distances, chemical shift values, intrinsic disorder characteristics of Mpro and its active sites with a set of computational tools. The active sites we found coincide with the currently known sites and include a new interface for interaction with a protein partner.

15.
Droplets of Life ; : 681-698, 2023.
Article in English | ScienceDirect | ID: covidwho-2104198

ABSTRACT

Infectious diseases continue to represent a major threat to the humankind. This is reiterated by the current COVID-19 pandemic that affected almost 550 million people worldwide and caused more than 6.35 million deaths. It is clear that in addition to the existing preventive measures and treatments for various pathogens, better understanding is needed of the relationship between pathogen infection and the human antiinfection immune response and of the specific mechanisms underlying these complex processes. There is a constant warfare between the hosts and infectious pathogens, where humans have evolved a very effective and broadly amended antiinfection immune system, but, in their turn, pathogens have evolved a multitude of immune escape mechanisms to efficiently oppose it. It is recognized now that liquid–liquid phase separation (LLPS) occupies a special place among the important molecular mechanisms of the antiinfection immune response. Some illustrative examples of the roles of LLPS in the antiinfection immune response are considered in this chapter.

16.
Curr Pharm Des ; 2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2089589

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major health concern worldwide and evolved into different variants. SARS-CoV-2 possesses a spike glycoprotein on its envelope that binds to the angiotensin-converting enzyme 2 (ACE-2) receptor of the host cell via the receptor-binding domain (RBD) in the upper respiratory tract. Since the SARS-CoV-2 virus variants changes the seveirity of dieseases and treatment scenarios, repurposing current medicines may provide a quick and appealing method with established safety features. The efficacy and safety of antiviral medicines against the coronavirus disease 2019 (COVID-19) have been investigated, and several of them are now undergoing clinical studies. Recently, it has been found that nitric oxide (NO) shows antiviral properties against SARS-CoV-2 and prevents the virus from binding to a host cell. In addition, NO is a well-known vasodilator and acts as an important coagulation mediator. With the fast-track development of COVID-19 treatments and vaccines, one avenue of research aimed at improving therapeutics is exploring different forms of drug delivery, including intranasal sprays and inhalation therapy. The nasal mucosa is more prone to be the site of infection as it is in more direct contact with the physical environment via air during inhalation and exhalation. Thus, the use of the exogenous nasal NO therapy via the intranasal route displays a distinct advantage. Therefore, the objective of this review is to summarize the relevant actions of NO via intranasal spray and inhalation delivery, its mechanism of action, and its use in the treatment of COVID-19.

17.
Cell Signal ; 101: 110495, 2023 01.
Article in English | MEDLINE | ID: covidwho-2068757

ABSTRACT

The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cytokine Release Syndrome , Comorbidity
18.
Biomolecules ; 12(10)2022 09 23.
Article in English | MEDLINE | ID: covidwho-2043570

ABSTRACT

The basic tenets of the shell disorder model (SDM) as applied to COVID-19 are that the harder outer shell of the virus shell (lower PID-percentage of intrinsic disorder-of the membrane protein M, PIDM) and higher flexibility of the inner shell (higher PID of the nucleocapsid protein N, PIDN) are correlated with the contagiousness and virulence, respectively. M protects the virion from the anti-microbial enzymes in the saliva and mucus. N disorder is associated with the rapid replication of the virus. SDM predictions are supported by two experimental observations. The first observation demonstrated lesser and greater presence of the Omicron particles in the lungs and bronchial tissues, respectively, as there is a greater level of mucus in the bronchi. The other observation revealed that there are lower viral loads in 2017-pangolin-CoV, which is predicted to have similarly low PIDN as Omicron. The abnormally hard M, which is very rarely seen in coronaviruses, arose from the fecal-oral behaviors of pangolins via exposure to buried feces. Pangolins provide an environment for coronavirus (CoV) attenuation, which is seen in Omicron. Phylogenetic study using M shows that COVID-19-related bat-CoVs from Laos and Omicron are clustered in close proximity to pangolin-CoVs, which suggests the recurrence of interspecies transmissions. Hard M may have implications for long COVID-19, with immune systems having difficulty degrading viral proteins/particles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Pangolins , Phylogeny , Reproducibility of Results , Viral Proteins , Nucleocapsid Proteins/genetics , Membrane Proteins
19.
Int J Biol Macromol ; 222(Pt A): 972-993, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041800

ABSTRACT

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mutation
20.
COVID ; 2(8):1089-1101, 2022.
Article in English | MDPI | ID: covidwho-1969118

ABSTRACT

For the first time in history, we have witnessed the origin and development of a pandemic. To handle the accelerated accumulation of viral mutations and to comprehend the virus' evolutionary adaptation in humans, an unparalleled program of genetic sequencing and monitoring of SARS-CoV-2 variants has been undertaken. Several scientists have theorized that, with the Omicron surge producing a more contagious but less severe disease, the end of COVID-19 is near. However, by analyzing the behavior shown by this virus for 2 years, we have noted that pandemic viruses do not always show decreased virulence. Instead, it appears there is an evolutionary equilibrium between transmissibility and virulence. We have termed this concept 'intermittent virulence';. The present work analyzes the temporal and epidemiological behavior of SARS-CoV-2 and suggests that there is a high possibility that new virulent variants will arise in the near future, although it is improbable that SARS-CoV-2's virulence will be the same as was seen during the alpha or delta waves, due to the fact that the human population has reached a sufficient level of herd immunity through natural infection or due to the vaccination programs. The most recent global mortality data raised a question whether this pandemic is really over. Furthermore, it is uncertain when the endemic phase will begin. Darwin's words: 'the survival of the fittest';are still valid, and the virus will continue killing nonvaccinated old people, vaccinated old people, and those with comorbidities. We have underestimated the SARS-CoV-2 mastery of immune escape and have not yet seen the full adaptive potential this virus can develop through natural selection.

SELECTION OF CITATIONS
SEARCH DETAIL