Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
J Acquir Immune Defic Syndr ; 90(1): 79-87, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1865033


BACKGROUND: Combination antiretroviral therapy (cART) has allowed for viral load (VL) suppression and increased life expectancy for persons with HIV (PWH). Altered brain integrity, measured by neuropsychological (NP) performance and neuroimaging, is still prevalent among virally suppressed PWH. Age-related conditions such as cardiovascular disease may also affect brain integrity. This study investigated the effects of cardiovascular risk, VL, and HIV serostatus on cerebral blood flow (CBF), brain volumetrics, and cognitive function in PWH and persons without HIV (PWoH). METHODS: Ten-year cardiovascular risk, using the Framingham Heart Study criteria, was calculated in PWH (n = 164) on cART with undetectable (≤20 copies/mL; n = 134) or detectable (>20 copies/mL; n = 30) VL and PWoH (n = 66). The effects of cardiovascular risk on brain integrity (CBF, volume, and cognition) were compared for PWH (undetectable and detectable VL) and PWoH. RESULTS: PWH had smaller brain volumes and worse NP scores than PWoH. PWH with detectable and undetectable VL had similar brain integrity measures. Higher cardiovascular risk was associated with smaller volumes and lower CBF in multiple brain regions for PWH and PWoH. Significant interactions between HIV serostatus and cardiovascular risk on brain volumes were observed in frontal, orbitofrontal, and motor regions. Cardiovascular risk was not associated with cognition for PWH or PWoH. CONCLUSIONS: Neuroimaging, but not cognitive measures, was associated with elevated cardiovascular risk. HIV serostatus was associated with diminished brain volumes and worse cognition while CBF remained unchanged, reflecting potential protective effects of cART. Neuroimaging measures of structure (volume) and function (CBF) may identify contributions of comorbidities, but future longitudinal studies are needed.

Cardiovascular Diseases , HIV Infections , Brain/diagnostic imaging , Cardiovascular Diseases/complications , HIV Infections/complications , HIV Infections/drug therapy , Heart Disease Risk Factors , Humans , Risk Factors , Viral Load
Chest ; 159(2): 724-732, 2021 02.
Article in English | MEDLINE | ID: covidwho-1049756


BACKGROUND: Millions of smartphones contain a photoplethysmography (PPG) biosensor (Maxim Integrated) that accurately measures pulse oximetry. No clinical use of these embedded sensors is currently being made, despite the relevance of remote clinical pulse oximetry to the management of chronic cardiopulmonary disease, and the triage, initial management, and remote monitoring of people affected by respiratory viral pandemics, such as severe acute respiratory syndrome coronavirus 2 or influenza. To be used for clinical pulse oximetry the embedded PPG system must be paired with an application (app) and meet US Food and Drug Administration (FDA) and International Organization for Standardization (ISO) requirements. RESEARCH QUESTION: Does this smartphone sensor with app meet FDA/ISO requirements? Are measurements obtained using this system comparable to those of hospital reference devices, across a wide range of people? STUDY DESIGN AND METHODS: We performed laboratory testing addressing ISO and FDA requirements in 10 participants using the smartphone sensor with app. Subsequently, we performed an open-label clinical study on 320 participants with widely varying characteristics, to compare the accuracy and precision of readings obtained by patients with those of hospital reference devices, using rigorous statistical methodology. RESULTS: "Breathe down" testing in the laboratory showed that the total root-mean-square deviation of oxygen saturation (Spo2) measurement was 2.2%, meeting FDA/ISO standards. Clinical comparison of the smartphone sensor with app vs hospital reference devices determined that Spo2 and heart rate accuracy were 0.48% points (95% CI, 0.38-0.58; P < .001) and 0.73 bpm (95% CI, 0.33-1.14; P < .001), respectively; Spo2 and heart rate precision were 1.25 vs reference 0.95% points (P < .001) and 5.99 vs reference 3.80 bpm (P < .001), respectively. These small differences were similar to the variation found between two FDA-approved reference instruments for Spo2: accuracy, 0.52% points (95% CI, 0.41-0.64; P < .001) and precision, 1.01 vs 0.86% points (P < .001). INTERPRETATION: Our findings support the application for full FDA/ISO approval of the smartphone sensor with app tested for use in clinical pulse oximetry. Given the immense and immediate practical medical importance of remote intermittent clinical pulse oximetry to both chronic disease management and the global ability to respond to respiratory viral pandemics, the smartphone sensor with app should be prioritized and fast-tracked for FDA/ISO approval to allow clinical use. TRIAL REGISTRY:; No.: NCT04233827; URL:

Mobile Applications , Oximetry/instrumentation , Photoplethysmography/instrumentation , Smartphone , Adolescent , Adult , Aged , Aged, 80 and over , Biosensing Techniques , Device Approval , Female , Humans , Male , Middle Aged , Oximetry/standards , Photoplethysmography/standards , United States , United States Food and Drug Administration , Young Adult