Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Year range
1.
Rev Invest Clin ; 2021 Jan 11.
Article in English | MEDLINE | ID: covidwho-1022353

ABSTRACT

In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated disease coronavirus disease 2019 (COVID-19), hypoxemia mechanisms differ from those observed in acute respiratory distress syndrome. Hypoxemia and respiratory failure in COVID- 19 are attributed to pulmonary angiopathy, increasing physiological pulmonary shunting1-3.

2.
BMC Infect Dis ; 20(1): 765, 2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-873952

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), may lead to severe systemic inflammatory response, pulmonary damage, and even acute respiratory distress syndrome (ARDS). This in turn may result in respiratory failure and in death. Experimentally, acetylcholine (ACh) modulates the acute inflammatory response, a neuro-immune mechanism known as the inflammatory reflex. Recent clinical evidence suggest that electrical and chemical stimulation of the inflammatory reflex may reduce the burden of inflammation in chronic inflammatory diseases. Pyridostigmine (PDG), an ACh-esterase inhibitor (i-ACh-e), increases the half-life of endogenous ACh, therefore mimicking the inflammatory reflex. This clinical trial is aimed at evaluating if add-on of PDG leads to a decrease of invasive mechanical ventilation and death among patients with severe COVID-19. METHODS: A parallel-group, multicenter, randomized, double-blinded, placebo-controlled, phase 2/3 clinical trial to test the efficacy of pyridostigmine bromide 60 mg/day P.O. to reduce the need for invasive mechanical ventilation and mortality in hospitalized patients with severe COVID-19. DISCUSSION: This study will provide preliminary evidence of whether or not -by decreasing systemic inflammation- add-on PDG can improve clinical outcomes in patients with severe COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04343963 (registered on April 14, 2020).


Subject(s)
Cholinesterase Inhibitors/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pyridostigmine Bromide/therapeutic use , Adult , Betacoronavirus/pathogenicity , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Humans , Inflammation , Lung/drug effects , Lung/pathology , Lung/physiopathology , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiration, Artificial
3.
Mol Med ; 26(1): 63, 2020 06 29.
Article in English | MEDLINE | ID: covidwho-617382

ABSTRACT

BACKGROUND: Oxygen therapy, using supraphysiological concentrations of oxygen (hyperoxia), is routinely administered to patients who require respiratory support including mechanical ventilation (MV). However, prolonged exposure to hyperoxia results in acute lung injury (ALI) and accumulation of high mobility group box 1 (HMGB1) in the airways. We previously showed that airway HMGB1 mediates hyperoxia-induced lung injury in a mouse model of ALI. Cholinergic signaling through the α7 nicotinic acetylcholine receptor (α7nAChR) attenuates several inflammatory conditions. The aim of this study was to determine whether 3-(2,4 dimethoxy-benzylidene)-anabaseine dihydrochloride, GTS-21, an α7nAChR partial agonist, inhibits hyperoxia-induced HMGB1 accumulation in the airways and circulation, and consequently attenuates inflammatory lung injury. METHODS: Mice were exposed to hyperoxia (≥99% O2) for 3 days and treated concurrently with GTS-21 (0.04, 0.4 and 4 mg/kg, i.p.) or the control vehicle, saline. RESULTS: The systemic administration of GTS-21 (4 mg/kg) significantly decreased levels of HMGB1 in the airways and the serum. Moreover, GTS-21 (4 mg/kg) significantly reduced hyperoxia-induced acute inflammatory lung injury, as indicated by the decreased total protein content in the airways, reduced infiltration of inflammatory monocytes/macrophages and neutrophils into the lung tissue and airways, and improved lung injury histopathology. CONCLUSIONS: Our results indicate that GTS-21 can attenuate hyperoxia-induced ALI by inhibiting extracellular HMGB1-mediated inflammatory responses. This suggests that the α7nAChR represents a potential pharmacological target for the treatment regimen of oxidative inflammatory lung injury in patients receiving oxygen therapy.

SELECTION OF CITATIONS
SEARCH DETAIL