Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Immunol ; 14: 1055429, 2023.
Article in English | MEDLINE | ID: covidwho-2274619

ABSTRACT

Importance: The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives: 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods: We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results: Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions: Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Diagnostic Techniques and Procedures , Antibodies, Neutralizing , Breakthrough Infections , COVID-19 Vaccines , Immunoglobulin M , COVID-19 Testing
8.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2158568

ABSTRACT

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Subject(s)
Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines , SARS-CoV-2/classification , SARS-CoV-2/genetics
9.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915276

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
10.
mSphere ; 7(3): e0017922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854243

ABSTRACT

To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Reinfection , Seroepidemiologic Studies
11.
Sci Transl Med ; 14(657): eabm4908, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1846321

ABSTRACT

The SARS-CoV-2 B.1.621 (Mu) variant emerged in January 2021 and was categorized as a variant of interest by the World Health Organization in August 2021. This designation prompted us to study the sensitivity of this variant to antibody neutralization. In a live virus neutralization assay with serum samples from individuals vaccinated with the Pfizer/BioNTech or Moderna mRNA vaccines, we measured neutralization antibody titers against B.1.621, an early isolate (spike 614D), and a variant of concern (B.1.351, Beta variant). We observed reduced neutralizing antibody titers against the B.1.621 variant (3.4- to 7-fold reduction, depending on the serum sample and time after the second vaccination) compared to the early isolate and a similar reduction when compared to B.1.351. Likewise, convalescent serum from hamsters previously infected with an early isolate neutralized B.1.621 to a lower degree. Despite this antibody titer reduction, hamsters could not be efficiently rechallenged with the B.1.621 variant, suggesting that the immune response to the first infection is adequate to provide protection against a subsequent infection with the B.1.621 variant.


Subject(s)
COVID-19 , Viral Envelope Proteins , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Membrane Glycoproteins/genetics , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins/genetics , COVID-19 Serotherapy
12.
Cell Rep ; 38(7): 110394, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719436

ABSTRACT

The emergence of the SARS-CoV-2 Delta variant (B.1.617.2) raises concerns about potential reduced sensitivity of the virus to antibody neutralization and subsequent vaccine breakthrough infections. Here, we use a live virus neutralization assay with sera from Pfizer- and Moderna-vaccinated individuals to examine neutralizing antibody titers against SARS-CoV-2 and observe a 3.9- and 2.7-fold reduction, respectively, in neutralizing antibody titers against the Delta variant compared with an early isolate bearing only a D614G substitution in its spike protein. We observe similar reduced sensitivity with sera from hamsters that were previously infected with an early isolate of SARS-CoV-2. Despite this reduction in neutralizing antibody titers against the Delta variant, hamsters previously infected (up to 15 months earlier) with an early isolate are protected from infection with the Delta variant, suggesting that the immune response to the first infection is sufficient to provide protection against subsequent infection with the Delta variant.


Subject(s)
Adaptive Immunity , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Humans , Reinfection/immunology , Reinfection/transmission , Reinfection/virology , SARS-CoV-2/genetics , Viral Load
14.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-1661117

ABSTRACT

As SARS-CoV-2 variants accumulate mutations, there is a risk of ineffective neutralizing antibodies against new variants and potential re-infection. Halfmann et al. report that, in the hamster model, previous infection with an early prototypical SARS-CoV-2 isolate prevents re-infection of the Delta variant and its transmission to naïve hamsters.

15.
J Appl Lab Med ; 7(3): 661-673, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1510987

ABSTRACT

BACKGROUND: Diagnostic sensitivities of point-of-care SARS-CoV-2 assays depend on specimen type and population-specific viral loads. Evaluation of these assays require "direct" specimens from paired-swab studies rather than more accessible residual specimens in viral transport media (VTM). METHODS: Residual VTM and limit-of-detection studies were conducted on Abbott ID NOW™ COVID-19, Quidel Sofia 2™ SARS Antigen FIA, and DiaSorin Simplexa™ COVID-19 Direct assays, with cycle threshold (CT) adjustments to approximate direct-specimen testing based on gene-target doubling each PCR cycle. Logistic regression was used to model assay performance by specimen CT. These models were applied to CT distributions of symptomatic and asymptomatic populations presenting to emergency services to predict the percentage of specimens that would be detected by each assay. A 96-sample paired-swab study was conducted to confirm model results. RESULTS: When using direct nasopharyngeal samples and fit with either VTM or limit-of-detection data, percent positivities for ID NOW (symptomatic 94.9%/97.4%; asymptomatic 88.4.0%/89.6%) and Simplexa (symptomatic 97.8%/97.2%; asymptomatic 91.1%/90.8%) were predicted to be similar. Likewise, percent positivities for ID NOW with direct nasal specimens (symptomatic 77.8%; asymptomatic 64.5%) and, fit with VTM data, Sofia 2 with direct nasopharyngeal specimens (symptomatic 76.6%, asymptomatic 60.3%) were similar. The paired-swab study comparing direct nasopharyngeal specimens on ID NOW and nasopharyngeal VTM specimens on Simplexa showed 99% concordance. CONCLUSIONS: Assay performance can be modeled as dependent on viral load, fit using laboratory bench study results, and adjusted to account for direct-specimen testing. When using nasopharyngeal specimens, direct testing on Abbott ID NOW and VTM testing on DiaSorin Simplexa have similar performance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Disease Progression , Humans , Nasopharynx , Sensitivity and Specificity
16.
Microbiol Spectr ; 9(2): e0008721, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1381168

ABSTRACT

Uncertainty exists whether mild COVID-19 confers immunity to reinfection. Questions also remain regarding the persistence of antibodies against SARS-CoV-2 after mild infection. We prospectively followed at-risk individuals with and without SARS-CoV-2 for reinfection and monitored the spike and nucleocapsid antibodies. This prospective cohort study was conducted over two visits, 3 to 6 months apart, between May 2020 and February 2021. Adults with and without COVID-19, verified by FDA EUA-approved SARS-CoV-2 RT-PCR assays, were screened for spike and nucleocapsid antibody responses using FDA EUA-approved immunoassays and for pseudoviral neutralization activity. The subjects were monitored for symptoms, exposure to COVID-19, COVID-19 testing, seroconversion, reinfection, and vaccination. A total of 653 subjects enrolled; 129 (20%) had a history of COVID-19 verified by RT-PCR at enrollment. Most had mild disease, with only three requiring hospitalization. No initially seropositive subjects experienced a subsequent COVID-19 infection during the follow-up versus 15 infections among initially seronegative subjects (infection rates of 0.00 versus 2.05 per 10,000 days at risk [P = 0.0485]). In all, 90% of SARS-CoV-2-positive subjects produced spike and nucleocapsid responses, and all but one of these had persistent antibody levels at follow-up. Pseudoviral neutralization activity was widespread among participants, did not decrease over time, and correlated with clinical antibody assays. Reinfection with SARS-CoV-2 was not observed among individuals with mild clinical COVID-19, while infections continued in a group without known prior infection. Spike and nucleocapsid COVID-19 antibodies were associated with almost all infections and persisted at stable levels for the study duration. IMPORTANCE This article demonstrates that people who have mild COVID-19 illnesses and produce antibodies are protected from reinfection for up to 6 months afterward. The antibodies that people produce in this situation are stable for up to 6 months as well. Clinical antibody assays correlate well with evidence of antibody-related viral neutralization activity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Reinfection/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/immunology , COVID-19 Testing , Female , Humans , Immunoassay , Male , Phosphoproteins/immunology , Prospective Studies , Reinfection/immunology , SARS-CoV-2/immunology
17.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1276013

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
18.
Am J Clin Pathol ; 155(2): 267-279, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-841691

ABSTRACT

OBJECTIVES: Serologic testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has experienced a changing landscape of available assays coupled with uncertainty surrounding performance characteristics. Studies are needed to directly compare multiple commercially available assays. METHODS: Residual serum samples were identified based on SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) testing, clinical test results, and collection dates. Serum samples were analyzed using assays from four different manufacturers: DiaSorin anti-SARS-CoV-2 S1/S2 IgG, EUROIMMUN anti-SARS-CoV-2 IgG ELISA, Roche Elecsys anti-SARS-CoV-2, and Siemens SARS-CoV-2 Total antibody assays. RESULTS: Samples from SARS-CoV-2 RT-PCR-positive patients became increasingly positive as time from symptom onset increased. For patients with latest sample 14 or more days after symptom onset, sensitivities reached 93.1% to 96.6%, 98.3%, and 96.6% for EUROIMMUN, Roche, and Siemens assays, respectively, which were superior to the DiaSorin assay at 87.7%. The specificity of Roche and Siemens assays was 100% and superior to DiaSorin and EUROIMMUN assays, which ranged from 96.1% to 97.0% and 86.3% to 96.4%, respectively. CONCLUSIONS: Laboratories should be aware of the advantages and limitations of serology testing options for SARS-CoV-2. The specificity and sensitivity achieved by the Roche and Siemens assays would be acceptable for testing in lower-prevalence regions and have the potential of orthogonal testing advantages if used in combination.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , High-Throughput Screening Assays/methods , SARS-CoV-2/immunology , Female , Humans , Male , Predictive Value of Tests , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL