Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Preprint in English | medRxiv | ID: ppmedrxiv-22273412


To inform public health policy, it is critical to monitor COVID-19 vaccine effectiveness (VE), including against acquiring infection. We estimated VE using a retrospective cohort study among repeat blood donors who donated during the first half of 2021, demonstrating a viable approach for monitoring of VE via serological surveillance. Using Poisson regression, we estimated overall VE was 88.8% (95% CI: 86.2-91.1), adjusted for demographic covariates and variable baseline risk. Time since first reporting vaccination, age, race-ethnicity, region, and calendar time were statistically significant predictors of incident infection. Studies of VE during periods of Delta and Omicron spread are underway.

Preprint in English | medRxiv | ID: ppmedrxiv-21266786


Serological surveillance studies of infectious diseases provide population-level estimates of infection and antibody prevalence, generating crucial insight into population-level immunity, risk factors leading to infection, and effectiveness of public health measures. These studies traditionally rely on detection of pathogen-specific antibodies in samples derived from venipuncture, an expensive and logistically challenging aspect of serological surveillance. During the COVID-19 pandemic, guidelines implemented to prevent the spread of SARS-CoV-2 infection made collection of venous blood logistically difficult at a time when SARS-CoV-2 serosurveillance was urgently needed. Dried blood spots (DBS) have generated interest as an alternative to venous blood for SARS-CoV-2 serological applications due to their stability, low cost, and ease of collection; DBS samples can be self-generated via fingerprick by community members and mailed at ambient temperatures. Here, we detail the development of four DBS-based SARS-CoV-2 serological methods and demonstrate their implementation in a large serological survey of community members from 12 cities in the East Bay region of the San Francisco metropolitan area using at- home DBS collection. We find that DBS perform similarly to plasma/serum in enzyme-linked immunosorbent assays and commercial SARS-CoV-2 serological assays. In addition, we show that DBS samples can reliably detect antibody responses months post-infection and track antibody kinetics after vaccination. Implementation of DBS enabled collection of valuable serological data from our study population to investigate changes in seroprevalence over an eight-month period. Our work makes a strong argument for the implementation of DBS in serological studies, not just for SARS-CoV-2, but any situation where phlebotomy is inaccessible.

Preprint in English | medRxiv | ID: ppmedrxiv-21255576


IntroductionThe REDS-IV-P Epidemiology, Surveillance and Preparedness of the Novel SARS-CoV-2 Epidemic (RESPONSE) seroprevalence study conducted monthly cross-sectional testing for SARS-CoV-2 antibodies on blood donors in six U.S. metropolitan regions to estimate the extent of SARS-COV-2 infections over time. Study Design/MethodsDuring March-August 2020, approximately [≥]1,000 serum specimens were collected monthly from each region and tested for SARS-CoV-2 antibodies using a well-validated algorithm. Regional seroprevalence estimates were weighted based on demographic differences with the general population. Seroprevalence was compared with reported COVID-19 case rates over time. Results/FindingsFor all regions, seroprevalence was <1.0% in March 2020. New York experienced the biggest increase (peak seroprevalence, 15.8 % in May). All other regions experienced modest increases in seroprevalence(1-2% in May-June to 2-4% in July-August). Seroprevalence was higher in younger, non-Hispanic Black, and Hispanic donors. Temporal increases in donor seroprevalence correlated with reported case rates in each region. In August, 1.3-5.6 estimated cumulative infections (based on seroprevalence data) per COVID-19 case reported to CDC. ConclusionIncreases in seroprevalence were found in all regions, with the largest increase in New York. Seroprevalence was higher in non-Hispanic Black and Hispanic blood donors than in non-Hispanic White blood donors. SARS-CoV-2 antibody testing of blood donor samples can be used to estimate the seroprevalence in the general population by region and demographic group. The methods derived from the RESPONSE seroprevalence study served as the basis for expanding SARS-CoV-2 seroprevalence surveillance to all 50 states and Puerto Rico. SummarySARS-CoV-2 serosurveillance data from blood donors in 6 US regions were used to estimate population weighted seroprevalence. Seroprevelance rates were higher in case rates. The study was expanded to a national donor serosurveillance program. DisclaimerThe content is solely the responsibility of the authors and does not represent the policy of the National Institutes of Health or the Department of Health and Human Services. Any specific brandnames included in this manuscript are for identification purposes only and are not intended to represent an endorsement by CDC. The findings and conclusions in this report are those of the authorsand do not necessarily represent the official position of the Centers of Disease Control and Prevention.

Preprint in English | medRxiv | ID: ppmedrxiv-20107482


We report very low SARS-CoV-2 seroprevalence in two San Francisco Bay Area populations. Seropositivity was 0.26% in 387 hospitalized patients admitted for non-respiratory indications and 0.1% in 1,000 blood donors. We additionally describe the longitudinal dynamics of immunoglobulin-G, immunoglobulin-M, and in vitro neutralizing antibody titers in COVID-19 patients. Neutralizing antibodies rise in tandem with immunoglobulin levels following symptom onset, exhibiting median time to seroconversion within one day of each other, and there is >93% positive percent agreement between detection of immunoglobulin-G and neutralizing titers.