Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cancers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1523875

ABSTRACT

Cytokines, chemokines, and (angiogenic) growth factors (CCGs) have been shown to play an intricate role in the progression of both solid and haematological malignancies. Recent studies have shown that SARS-CoV-2 infection leads to a worse outcome in cancer patients, especially in haematological malignancy patients. Here, we investigated how SARS-CoV-2 infection impacts the already altered CCG levels in solid or haematological malignancies, specifically, whether there is a protective effect or rather a potentially higher risk for major COVID-19 complications in cancer patients due to elevated CCGs linked to cancer progression. Serially analysing immune responses with 55 CCGs in cancer patients under active treatment with or without SARS-CoV-2 infection, we first showed that cancer patients without SARS-CoV-2 infection (n = 54) demonstrate elevated levels of 35 CCGs compared to the non-cancer, non-infected control group of health care workers (n = 42). Of the 35 CCGs, 19 were common to both the solid and haematological malignancy groups and comprised previously described cytokines such as IL-6, TNF-α, IL-1Ra, IL-17A, and VEGF, but also several less well described cytokines/chemokines such as Fractalkine, Tie-2, and T cell chemokine CTACK. Importantly, we show here that 7 CCGs are significantly altered in SARS-CoV-2 exposed cancer patients (n = 52). Of these, TNF-α, IFN-ß, TSLP, and sVCAM-1, identified to be elevated in haematological cancers, are also known tumour-promoting factors. Longitudinal analysis conducted over 3 months showed persistence of several tumour-promoting CCGs in SARS-CoV-2 exposed cancer patients. These data demonstrate a need for increased vigilance for haematological malignancy patients as a part of long COVID follow-up.

2.
BMC Complement Med Ther ; 21(1): 141, 2021 May 12.
Article in English | MEDLINE | ID: covidwho-1388756

ABSTRACT

BACKGROUND: Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. METHODS: Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. RESULTS: Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. CONCLUSIONS: Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense.


Subject(s)
COVID-19/drug therapy , Echinacea , Immunologic Factors/pharmacology , Monocytes/drug effects , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Gene Expression , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Interferons/drug effects , Phytotherapy , Plant Extracts/therapeutic use
3.
Molecules ; 26(13)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295889

ABSTRACT

COVID-19 is a pandemic disease caused by the SARS-CoV-2 virus, which is potentially fatal for vulnerable individuals. Disease management represents a challenge for many countries, given the shortage of medicines and hospital resources. The objective of this work was to review the medicinal plants, foods and natural products showing scientific evidence for host protection against various types of coronaviruses, with a focus on SARS-CoV-2. Natural products that mitigate the symptoms caused by various coronaviruses are also presented. Particular attention was placed on natural products that stabilize the Renin-Angiotensin-Aldosterone System (RAAS), which has been associated with the entry of the SARS-CoV-2 into human cells.


Subject(s)
Biological Products/pharmacology , Coronavirus/drug effects , Phytotherapy/methods , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Biological Products/metabolism , COVID-19/drug therapy , COVID-19/virology , Humans , Pandemics , Plant Extracts/metabolism , Plants/chemistry , Renin-Angiotensin System/drug effects
4.
Eur J Cancer ; 148: 328-339, 2021 05.
Article in English | MEDLINE | ID: covidwho-1103845

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) is interfering heavily with the screening, diagnosis and treatment of cancer patients. Better knowledge of the seroprevalence and immune response after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in this population is important to manage them safely during the pandemic. METHODS: 922 cancer patients, 100 non-cancer patients and 94 health care workers (HCW) attending the Multidisciplinary Oncology Unit of Antwerp University Hospital from 24th of March 2020 till 31st of May 2020, and the Oncology Unit of AZ Maria Middelares Hospital, Ghent, from 13th of April 2020 till 31st of May 2020 participated in the study. The Alinity® (A; Abbott) and Liaison® (D; DiaSorin) commercially available assays were used to measure SARS-CoV-2 IgG, while total SARS-CoV-2 Ig was measured by Elecsys® (R; Roche). RESULTS: In the overall study population IgG/total SARS-CoV-2 antibodies were found in respectively 32/998 (3.2%), 68/1020 (6.7%), 37/1010 (3.7%) and of individuals using the A, D or R test. Forty-six out of 618 (7.4%) persons had a positive SARS-CoV-2 polymerase chain reaction (RT-PCR) test. Seroprevalence in cancer patients (A:2.2%, D:6.2%, R:3.0%), did not significantly differ from that in non-cancer patients (A:1.1%, D:5.6%, R:0.0%), but was lower than the HCW (A:13%, D:12%, R:12%; respectively Fisher's exact test p = 0.00001, p = 0.046, p = 0.0004). A positive SARS-CoV-2 RT-PCR was found in 6.8% of the cancer patients, 2.3% of the non-cancer patients and 28.1% of the HCW (Fisher's exact test p = 0.0004). Correlation between absolute values of the different Ig tests was poor in the cancer population. Dichotomising a positive versus negative test result, the A and R test correlated well (kappa 0.82 p McNemar test = 0.344), while A and D and R and D did not (respectively kappa 0.49 and 0.57; result significantly different p McNemar test = <0.0001 for both). The rate of seroconversion (>75%) and median absolute antibody levels (A: 7.0 versus 4.7; D 74.0 versus 26.6, R: 16.34 versus 7.32; all >P Mann Whitney U test = 0.28) in cancer patients and HCW with a positive RT-PCR at least 7 days earlier did not show any differences. However, none (N = 0/4) of the patients with hematological tumours had seroconversion and absolute antibody levels remained much lower compared to patients with solid tumours (R: 0.1 versus 37.6, p 0.003; D 4.1 versus 158, p 0.008) or HCW (all p < 0.0001). CONCLUSION: HCW were at high risk of being infected by SARS-CoV-2 during the first wave of the pandemic. Seroprevalence in cancer patients was low in the study period. Although Ig immune response in cancer patients with solid tumours does not differ from healthy volunteers, patients with hematological tumours have a very poor humoral immune response. This has to be taken into account in future vaccination programmes in this population. SARS-CoV-2 antibody tests have divergent results and seem to have little added value in the management of cancer patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Immunoglobulin G/immunology , Neoplasms/epidemiology , Adolescent , Aged , Ambulatory Care , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Neoplasms/immunology , Oncology Service, Hospital , Prospective Studies , Reagent Kits, Diagnostic , Reproducibility of Results , SARS-CoV-2 , Seroconversion , Seroepidemiologic Studies
5.
Cancer Treat Rev ; 89: 102068, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-640225

ABSTRACT

The outbreak of the SARS-CoV-2 pandemic has overwhelmed health care systems in many countries. The clinical presentation of the SARS-CoV-2 varies between a subclinical or flu-like syndrome to that of severe pneumonia with multi-organ failure and death. Initial reports have suggested that cancer patients may have a higher susceptibility to get infected by the SARS-CoV-2 virus but current evidence remains poor as it is biased by important confounders. Patients with ongoing or recent cancer treatment for advanced active disease, metastatic solid tumors and hematological malignancies are at higher risk of developing severe COVID-19 respiratory disease that requires hospitalization and have a poorer disease outcome compared to individuals without cancer. However it is not clear whether these are independent risk factors, or mainly driven by male gender, age, obesity, performance status, uncontrolled diabetes, cardiovascular disease and various other medical conditions. These often have a greater influence on the probability to die due to SARS-CoV-2 then cancer. Delayed diagnosis and suboptimal cancer management due to the pandemic results in disease upstaging and has considerable impact cancer on specific death rates. Surgery during the peak of the pandemic seems to increase mortality, but there is no convincing evidence that adjuvant systemic cancer therapy and radiotherapy are contraindicated, implicating that cancer treatment can be provided safely after individual risk/benefit assessment and some adaptive measures. Underlying immunosuppression, elevated cytokine levels, altered expression of the angiotensin converting enzyme (ACE-2) and TMPRSS2, and a prothrombotic status may fuel the effects of a SARS-CoV-2 in some cancer patients, but have the potential to be used as biomarkers for severe disease and therapeutic targets. The rapidly expanding literature on COVID-19 should be interpreted with care as it is often hampered by methodological and statistical flaws.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/mortality , Neoplasms/mortality , Neoplasms/virology , Pneumonia, Viral/mortality , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Neoplasms/immunology , Neoplasms/therapy , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL