Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 13: 827889, 2022.
Article in English | MEDLINE | ID: covidwho-1731779

ABSTRACT

It is well established that pregnancy induces deep changes in the immune system. This is part of the physiological adaptation of the female organism to the pregnancy and the immunological tolerance toward the fetus. Indeed, over the three trimesters, the suppressive T regulatory lymphocytes are progressively more represented, while the expression of co-stimulatory molecules decreases overtime. Such adaptations relate to an increased risk of infections and progression to severe disease in pregnant women, potentially resulting in an altered generation of long-lived specific immunological memory of infection contracted during pregnancy. How potent is the immune response against SARS-CoV-2 in infected pregnant women and how long the specific SARS-CoV-2 immunity might last need to be urgently addressed, especially considering the current vaccinal campaign. To address these questions, we analyzed the long-term immunological response upon SARS-CoV-2 infection in pregnant women from delivery to a six-months follow-up. In particular, we investigated the specific antibody production, T cell memory subsets, and inflammation profile. Results show that 80% developed an anti-SARS-CoV-2-specific IgG response, comparable with the general population. While IgG were present only in 50% of the asymptomatic subjects, the antibody production was elicited by infection in all the mild-to-critical patients. The specific T-cell memory subsets rebalanced over-time, and the pro-inflammatory profile triggered by specific SARS-CoV-2 stimulation faded away. These results shed light on SARS-CoV-2-specific immunity in pregnant women; understanding the immunological dynamics of the immune system in response to SARS-CoV-2 is essential for defining proper obstetric management of pregnant women and fine tune gender-specific vaccinal plans.


Subject(s)
COVID-19/immunology , Immunologic Memory/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , Cell Line , Chlorocebus aethiops , Female , Humans , Pregnancy , Pregnant Women , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Young Adult
2.
Microbiol Spectr ; 10(1): e0150421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1604818

ABSTRACT

In December 2019, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started spreading worldwide causing the coronavirus disease 2019 (COVID-19) pandemic. The hyperactivation of the immune system has been proposed to account for disease severity and death in COVID-19 patients. Despite several approaches having been tested, no therapeutic protocol has been approved. Given that Cyclosporine A (CsA) is well-known to exert a strong antiviral activity on several viral strains and an anti-inflammatory role in different organs with relevant benefits in diverse pathological contexts, we tested its effects on SARS-CoV-2 infection of lung cells. We found that treatment with CsA either before or after infection of CaLu3 cells by three SARS-CoV-2 variants: (i) reduces the expression of both viral RNA and proteins in infected cells; (ii) decreases the number of progeny virions released by infected cells; (iii) dampens the virus-triggered synthesis of cytokines (including IL-6, IL-8, IL1α and TNF-α) that are involved in cytokine storm in patients. Altogether, these data provide a rationale for CsA repositioning for the treatment of severe COVID-19 patients. IMPORTANCE SARS-CoV-2 is the most recently identified member of the betacoronavirus genus responsible for the COVID-19 pandemic. Repurposing of available drugs has been a "quick and dirty" approach to try to reduce mortality and severe symptoms in affected patients initially, and can still represent an undeniable and valuable approach to face COVID-19 as the continuous appearance and rapid diffusion of more "aggressive"/transmissible variants, capable of eluding antibody neutralization, challenges the effectiveness of some anti-SARS-CoV-2 vaccines. Here, we tested a known antiviral and anti-inflammatory drug, Cyclosporine A (CsA), and found that it dampens viral infection and cytokine release from lung cells upon exposure to three different SARS-CoV-2 variants. Knock down of the main intracellular target of CsA, Cyclophilin A, does not phenocopy the drug inhibition of viral infection. Altogether, these findings shed new light on the cellular mechanisms of SARS-CoV-2 infection and provide the rationale for CsA repositioning to treat severe COVID-19 patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Cyclosporine/pharmacology , Cytokines/immunology , Lung/virology , SARS-CoV-2/drug effects , Virus Release/drug effects , COVID-19/genetics , COVID-19/immunology , Cytokine Release Syndrome , Cytokines/genetics , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology
4.
Cells ; 10(11)2021 11 16.
Article in English | MEDLINE | ID: covidwho-1523883

ABSTRACT

While the risk of SARS-CoV-2 infection and/or COVID-19 disease progression in the general population has been largely assessed, its impact on HIV-positive individuals remains unclear. We present clinical and immunological data collected in a cohort of HIV-infected young individuals during the first wave of COVID-19 pandemic. SARS-CoV-2 RNA, virus-specific antibodies, as well as the expression of factors involved in the anti-viral immune response were analyzed. Moreover, we set up an in vitro coinfection assay to study the mechanisms correlated to the coinfection process. Our results did not show any increased risk of severe COVID-19 in HIV-positive young individuals. In those subjects who contracted SARS-CoV-2 infection, an increase in IL-10 expression and production was observed. Furthermore, in the in vitro coinfection assay, we revealed a reduction in SARS-CoV-2 replication associated to an upregulation of IL-10. We speculate that IL-10 could play a crucial role in the course of SARS-CoV-2 infection in HIV-positive individuals. These results might help defining clinical management of HIV/SARS-CoV-2 co-infected young individuals, or putative indications for vaccination schedules in this population.


Subject(s)
COVID-19/immunology , Coinfection/immunology , HIV Infections/immunology , Adolescent , Adult , COVID-19/virology , Child , Child, Preschool , Coinfection/virology , HIV Infections/virology , Humans , Infant , Inflammation , Interleukin-10/blood , Interleukin-10/genetics , Male , RNA, Messenger/blood , SARS-CoV-2/immunology , Young Adult
5.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518198

ABSTRACT

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Subject(s)
COVID-19/complications , Cytokines/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Case-Control Studies , Cytokines/drug effects , DNA Methylation , Female , Humans , Immunophenotyping , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/drug effects , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1beta/drug effects , Interleukin-1beta/immunology , Interleukin-8/drug effects , Interleukin-8/immunology , Male , MicroRNAs/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Promoter Regions, Genetic
6.
Reprod Sci ; 28(10): 2939-2941, 2021 10.
Article in English | MEDLINE | ID: covidwho-1321928

ABSTRACT

Pregnant women display a higher risk of progression to disease and higher viral loads during infections due to their more permissive, tolerogenic immune system. However, only few studies have focused on SARS-CoV-2 intrapartum vertical transmission via vaginal secretions or faeces. The aim of this study was to investigate the presence of the virus in vaginal, rectal and blood specimens from pregnant women characterized by different COVID-19 disease severity. We enrolled 56 SARS-CoV-2-positive pregnant women, of which 46 (82%) were in the third trimester of pregnancy, 6 (10%) in the second and 4 (7%) in the first. QPCR was performed to detect the virus in vaginal and rectal swabs and in plasma samples. SARS-CoV-2 was detected in 27% of rectal swabs of pregnant women in the third trimester, while no virus particles were detected in vaginal swabs of the same patients. Furthermore, only 4% plasma samples tested positive to SARS-CoV-2. No virus was detected in newborn's nasopharyngeal swabs. Despite the low number of subjects enrolled, our data suggest that, while theoretically possible, intrapartum vaginal or orofecal SARS-CoV-2 transmission seems to be unlikely.


Subject(s)
COVID-19/transmission , COVID-19/virology , Infectious Disease Transmission, Vertical , Nasopharynx/virology , Parturition , Pregnancy Complications, Infectious/virology , Rectum/virology , SARS-CoV-2/isolation & purification , Vagina/virology , Adult , COVID-19/blood , COVID-19/diagnosis , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/diagnosis , Prospective Studies , Risk Assessment , Risk Factors , Young Adult
7.
Cells ; 10(6)2021 06 08.
Article in English | MEDLINE | ID: covidwho-1264419

ABSTRACT

In late 2019, the betacoronavirus SARS-CoV-2 was identified as the viral agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. Coronaviruses Spike proteins are responsible for their ability to interact with host membrane receptors and different proteins have been identified as SARS-CoV-2 interactors, among which Angiotensin-converting enzyme 2 (ACE2), and Basigin2/EMMPRIN/CD147 (CD147). CD147 plays an important role in human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, Kaposi's sarcoma-associated herpesvirus, and severe acute respiratory syndrome coronavirus infections. In particular, SARS-CoV recognizes the CD147 receptor expressed on the surface of host cells by its nucleocapsid protein binding to cyclophilin A (CyPA), a ligand for CD147. However, the involvement of CD147 in SARS-CoV-2 infection is still debated. Interference with both the function (blocking antibody) and the expression (knock down) of CD147 showed that this receptor partakes in SARS-CoV-2 infection and provided additional clues on the underlying mechanism: CD147 binding to CyPA does not play a role; CD147 regulates ACE2 levels and both receptors are affected by virus infection. Altogether, these findings suggest that CD147 is involved in SARS-CoV-2 tropism and represents a possible therapeutic target to challenge COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Basigin/physiology , SARS-CoV-2/physiology , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basigin/antagonists & inhibitors , Basigin/genetics , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Hep G2 Cells , Host-Pathogen Interactions , Humans , Molecular Targeted Therapy , RNA Interference/physiology , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Receptors, Virus/metabolism , Receptors, Virus/physiology , SARS-CoV-2/metabolism , Vero Cells , Viral Tropism/physiology
8.
Cells ; 9(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-732817

ABSTRACT

Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.


Subject(s)
Aminopeptidases/genetics , Betacoronavirus/immunology , Coronavirus Infections/genetics , Immunization/methods , Leukocytes, Mononuclear/virology , Macrophages/virology , Pneumonia, Viral/genetics , Protein Isoforms/genetics , Antigen Presentation/genetics , Blood Donors , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Gene Expression/immunology , Genotype , HIV Infections/genetics , HIV Infections/virology , HIV-1/immunology , Humans , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Minor Histocompatibility Antigens/genetics , Pandemics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Transcription, Genetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL