Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Clin Med ; 11(5)2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1715447

ABSTRACT

As the clinical outcome of octogenarian patients hospitalised for COVID-19 is very poor, here we assessed the clinical characteristics and outcomes of patients aged 80 year or older hospitalised for COVID-19 receiving non-invasive respiratory support (NIRS). A multicentre, retrospective, observational study was conducted in seven hospitals in Northern Italy. All patients aged ≥80 years with COVID-19 associated hypoxemic acute respiratory failure (hARF) undergoing NIRS between 24 February 2020, and 31 March 2021, were included. Out of 252 study participants, 156 (61.9%) and 163 (64.6%) died during hospital stay and within 90 days from hospital admission, respectively. In this case, 228 (90.5%) patients only received NIRS (NIRS group), while 24 (9.5%) were treated with invasive mechanical ventilation (IMV) after NIRS failure (NIRS+IMV group). In-hospital mortality did not significantly differ between NIRS and NIRS+IMV group (61.0% vs. 70.8%, respectively; p = 0.507), while survival probability at 90 days was significantly higher for NIRS compared to NIRS+IMV patients (0.379 vs. 0.147; p = 0.0025). The outcome of octogenarian patients with COVID-19 receiving NIRS is quite poor. Caution should be used when considering transition from NIRS to IMV after NIRS failure.

2.
Panminerva Med ; 63(4): 529-538, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1689607

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has changed bronchoscopy practices worldwide. Bronchoscopy is a high-risk aerosol-generating procedure with a potential for direct SARS-CoV-2 exposure and hospital-acquired infection. Current guidelines about personal protective equipment and environment considerations represent key competencies to minimize droplets dispersion and reduce the risk of transmission. Different measures should be put in field based on setting, patient's clinical characteristics, urgency and indications of bronchoscopy. The use of this technique in SARS-CoV-2 patients is reported primarily for removal of airway plugs and for obtaining microbiological culture samples. In mechanically ventilated patients with SARS-CoV-2, bronchoscopy is commonly used to manage complications such as hemoptysis, atelectasis or lung collapse when prone positioning, physiotherapy or recruitment maneuvers have failed. Further indications are represented by assistance during percutaneous tracheostomy. Continuous positive airway pressure, non-invasive ventilation support and high flow nasal cannula oxygen are frequently used in patient affected by Coronavirus disease 2019 (COVID-19): management of patients' airways and ventilation strategies differs from bronchoscopy indications, patient's clinical status and in course or required ventilatory support. Sedation is usually administered by the pulmonologist (performing the bronchoscopy) or by the anesthetist depending on the complexity of the procedure and the level of sedation required. Lastly, elective bronchoscopy for diagnostic indications during COVID-19 pandemic should be carried on respecting rigid standards which allow to minimize potential viral transmission, independently from patient's COVID-19 status. This narrative review aims to evaluate the indications, procedural measures and ventilatory strategies of bronchoscopy performed in different settings during COVID-19 pandemic.


Subject(s)
Bronchoscopy/statistics & numerical data , COVID-19 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Noninvasive Ventilation , Respiratory Insufficiency/therapy , Tracheostomy , COVID-19/epidemiology , Cannula , Continuous Positive Airway Pressure , Humans , Pandemics , Respiratory Insufficiency/etiology , SARS-CoV-2
3.
Metabolites ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1554799

ABSTRACT

Infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe respiratory tract damage and acute lung injury. Therefore, it is crucial to study breath-associated biofluids not only to investigate the breath's biochemical changes caused by SARS-CoV-2 infection, but also to discover potential biomarkers for the development of new diagnostic tools. In the present study, we performed an untargeted metabolomics approach using a bidimensional gas chromatography mass spectrometer (GCxGC-TOFMS) on exhaled breath condensate (EBC) from COVID-19 patients and negative healthy subjects to identify new potential biomarkers for the noninvasive diagnosis and monitoring of the COVID-19 disease. The EBC analysis was further performed in patients with acute or acute-on-chronic cardiopulmonary edema (CPE) to assess the reliability of the identified biomarkers. Our findings demonstrated that an abundance of EBC fatty acids can be used to discriminate COVID-19 patients and that they may have a protective effect, thus suggesting their potential use as a preventive strategy against the infection.

6.
Panminerva Med ; 63(4): 529-538, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1451032

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has changed bronchoscopy practices worldwide. Bronchoscopy is a high-risk aerosol-generating procedure with a potential for direct SARS-CoV-2 exposure and hospital-acquired infection. Current guidelines about personal protective equipment and environment considerations represent key competencies to minimize droplets dispersion and reduce the risk of transmission. Different measures should be put in field based on setting, patient's clinical characteristics, urgency and indications of bronchoscopy. The use of this technique in SARS-CoV-2 patients is reported primarily for removal of airway plugs and for obtaining microbiological culture samples. In mechanically ventilated patients with SARS-CoV-2, bronchoscopy is commonly used to manage complications such as hemoptysis, atelectasis or lung collapse when prone positioning, physiotherapy or recruitment maneuvers have failed. Further indications are represented by assistance during percutaneous tracheostomy. Continuous positive airway pressure, non-invasive ventilation support and high flow nasal cannula oxygen are frequently used in patient affected by Coronavirus disease 2019 (COVID-19): management of patients' airways and ventilation strategies differs from bronchoscopy indications, patient's clinical status and in course or required ventilatory support. Sedation is usually administered by the pulmonologist (performing the bronchoscopy) or by the anesthetist depending on the complexity of the procedure and the level of sedation required. Lastly, elective bronchoscopy for diagnostic indications during COVID-19 pandemic should be carried on respecting rigid standards which allow to minimize potential viral transmission, independently from patient's COVID-19 status. This narrative review aims to evaluate the indications, procedural measures and ventilatory strategies of bronchoscopy performed in different settings during COVID-19 pandemic.


Subject(s)
Bronchoscopy/statistics & numerical data , COVID-19 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Noninvasive Ventilation , Respiratory Insufficiency/therapy , Tracheostomy , COVID-19/epidemiology , Cannula , Continuous Positive Airway Pressure , Humans , Pandemics , Respiratory Insufficiency/etiology , SARS-CoV-2
7.
Crit Care ; 25(1): 268, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1330231

ABSTRACT

BACKGROUND: Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. METHODS: We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with 'do-not-intubate' (DNI) orders. RESULTS: Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30-41%]. 26% [21-30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36-54%]. 23% [15-32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65-78%]. Oxygenation on admission was the main source of between-study heterogeneity. CONCLUSIONS: During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. REGISTRATION: PROSPERO, https://www.crd.york.ac.uk/prospero/ , CRD42020224788, December 11, 2020.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Distress Syndrome/therapy , COVID-19/mortality , Continuous Positive Airway Pressure , Hospital Mortality , Humans , Intensive Care Units , Intubation/statistics & numerical data , Observational Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/virology
8.
Sci Rep ; 11(1): 13418, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286475

ABSTRACT

In patients intubated for hypoxemic acute respiratory failure (ARF) related to novel coronavirus disease (COVID-19), we retrospectively compared two weaning strategies, early extubation with immediate non-invasive ventilation (NIV) versus standard weaning encompassing spontaneous breathing trial (SBT), with respect to IMV duration (primary endpoint), extubation failures and reintubations, rate of tracheostomy, intensive care unit (ICU) length of stay and mortality (additional endpoints). All COVID-19 adult patients, intubated for hypoxemic ARF and subsequently extubated, were enrolled. Patients were included in two groups, early extubation followed by immediate NIV application, and conventionally weaning after passing SBT. 121 patients were enrolled and analyzed, 66 early extubated and 55 conventionally weaned after passing an SBT. IMV duration was 9 [6-11] days in early extubated patients versus 11 [6-15] days in standard weaning group (p = 0.034). Extubation failures [12 (18.2%) vs. 25 (45.5%), p = 0.002] and reintubations [12 (18.2%) vs. 22 (40.0%) p = 0.009] were fewer in early extubation compared to the standard weaning groups, respectively. Rate of tracheostomy, ICU mortality, and ICU length of stay were no different between groups. Compared to standard weaning, early extubation followed by immediate NIV shortened IMV duration and reduced the rate of extubation failure and reintubation.


Subject(s)
COVID-19/pathology , Noninvasive Ventilation/methods , Ventilator Weaning/methods , Aged , COVID-19/mortality , COVID-19/virology , Comorbidity , Female , Hospital Mortality , Humans , Intensive Care Units , Kaplan-Meier Estimate , Length of Stay , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification , Time Factors , Tracheostomy
9.
ERJ Open Res ; 7(2)2021 Apr.
Article in English | MEDLINE | ID: covidwho-1273241

ABSTRACT

In patients with #COVID19-related acute hypoxic respiratory failure requiring noninvasive ventilatory support, EBC collection with adequate precautions may be feasible and future studies will be needed to explore this research field https://bit.ly/39OxufF.

10.
Crit Care ; 25(1): 186, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1255959

ABSTRACT

BACKGROUND: In acute respiratory distress syndrome (ARDS), extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) measured by transpulmonary thermodilution reflect the degree of lung injury. Whether EVLWi and PVPI are different between non-COVID-19 ARDS and the ARDS due to COVID-19 has never been reported. We aimed at comparing EVLWi, PVPI, respiratory mechanics and hemodynamics in patients with COVID-19 ARDS vs. ARDS of other origin. METHODS: Between March and October 2020, in an observational study conducted in intensive care units from three university hospitals, 60 patients with COVID-19-related ARDS monitored by transpulmonary thermodilution were compared to the 60 consecutive non-COVID-19 ARDS admitted immediately before the COVID-19 outbreak between December 2018 and February 2020. RESULTS: Driving pressure was similar between patients with COVID-19 and non-COVID-19 ARDS, at baseline as well as during the study period. Compared to patients without COVID-19, those with COVID-19 exhibited higher EVLWi, both at the baseline (17 (14-21) vs. 15 (11-19) mL/kg, respectively, p = 0.03) and at the time of its maximal value (24 (18-27) vs. 21 (15-24) mL/kg, respectively, p = 0.01). Similar results were observed for PVPI. In COVID-19 patients, the worst ratio between arterial oxygen partial pressure over oxygen inspired fraction was lower (81 (70-109) vs. 100 (80-124) mmHg, respectively, p = 0.02) and prone positioning and extracorporeal membrane oxygenation (ECMO) were more frequently used than in patients without COVID-19. COVID-19 patients had lower maximal lactate level and maximal norepinephrine dose than patients without COVID-19. Day-60 mortality was similar between groups (57% vs. 65%, respectively, p = 0.45). The maximal value of EVLWi and PVPI remained independently associated with outcome in the whole cohort. CONCLUSION: Compared to ARDS patients without COVID-19, patients with COVID-19 had similar lung mechanics, but higher EVLWi and PVPI values from the beginning of the disease. This was associated with worse oxygenation and with more requirement of prone positioning and ECMO. This is compatible with the specific lung inflammation and severe diffuse alveolar damage related to COVID-19. By contrast, patients with COVID-19 had fewer hemodynamic derangement. Eventually, mortality was similar between groups. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: ClinicalTrials.gov (NCT04337983). Registered 30 March 2020-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04337983 .


Subject(s)
COVID-19/metabolism , Capillary Permeability , Extravascular Lung Water/metabolism , Respiratory Distress Syndrome/metabolism , Severity of Illness Index , COVID-19/complications , Hemodynamics , Humans , Lung/blood supply , Male , Middle Aged , Monitoring, Physiologic/methods , Prognosis , Pulmonary Edema/metabolism , Thermodilution
11.
EMBO Mol Med ; 13(5): e14124, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1159173

ABSTRACT

This study independently confirms increased levels of osteopontin in COVID-19 patients but also suggests that osteopontin cannot be used as a biomarker of SARS-CoV-2 infection, as elevated levels of circulating osteopontin are found in inflammatory lung disease regardless of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Energy Metabolism , Humans , Mitochondria , Monocytes , Osteopontin
12.
Front Mol Biosci ; 8: 632290, 2021.
Article in English | MEDLINE | ID: covidwho-1127989

ABSTRACT

Knowledge of the host response to the novel coronavirus SARS-CoV-2 remains limited, hindering the understanding of COVID-19 pathogenesis and the development of therapeutic strategies. During the course of a viral infection, host cells release exosomes and other extracellular vesicles carrying viral and host components that can modulate the immune response. The present study used a shotgun proteomic approach to map the host circulating exosomes' response to SARS-CoV-2 infection. We investigated how SARS-CoV-2 infection modulates exosome content, exosomes' involvement in disease progression, and the potential use of plasma exosomes as biomarkers of disease severity. A proteomic analysis of patient-derived exosomes identified several molecules involved in the immune response, inflammation, and activation of the coagulation and complement pathways, which are the main mechanisms of COVID-19-associated tissue damage and multiple organ dysfunctions. In addition, several potential biomarkers-such as fibrinogen, fibronectin, complement C1r subcomponent and serum amyloid P-component-were shown to have a diagnostic feature presenting an area under the curve (AUC) of almost 1. Proteins correlating with disease severity were also detected. Moreover, for the first time, we identified the presence of SARS-CoV-2 RNA in the exosomal cargo, which suggests that the virus might use the endocytosis route to spread infection. Our findings indicate circulating exosomes' significant contribution to several processes-such as inflammation, coagulation, and immunomodulation-during SARS-CoV-2 infection. The study's data are available via ProteomeXchange with the identifier PXD021144.

13.
ERJ Open Res ; 7(1)2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059439

ABSTRACT

AIM: We aimed to characterise a large population of coronavirus disease 2019 (COVID-19) patients with moderate-to-severe hypoxaemic acute respiratory failure (ARF) receiving continuous positive airway pressure (CPAP) outside the intensive care unit (ICU), and to ascertain whether the duration of CPAP application increased the risk of mortality for patients requiring intubation. METHODS: In this retrospective, multicentre cohort study, we included adult COVID-19 patients, treated with CPAP outside ICU for hypoxaemic ARF from 1 March to 15 April, 2020. We collected demographic and clinical data, including CPAP therapeutic goal, hospital length of stay and 60-day in-hospital mortality. RESULTS: The study included 537 patients with a median (interquartile range (IQR) age of 69 (60-76) years. 391 (73%) were male. According to the pre-defined CPAP therapeutic goal, 397 (74%) patients were included in the full treatment subgroup, and 140 (26%) in the do not intubate (DNI) subgroup. Median (IQR) CPAP duration was 4 (1-8) days, while hospital length of stay was 16 (9-27) days. 60-day in-hospital mortality was 34% (95% CI 0.304-0.384%) overall, and 21% (95% CI 0.169-0.249%) and 73% (95% CI 0.648-0.787%) for full treatment and DNI subgroups, respectively. In the full treatment subgroup, in-hospital mortality was 42% (95% CI 0.345-0.488%) for 180 (45%) CPAP failures requiring intubation, and 2% (95% CI 0.008-0.035%) for the remaining 217 (55%) patients who succeeded. Delaying intubation was associated with increased mortality (hazard ratio 1.093, 95% CI 1.010-1.184). CONCLUSIONS: We described a large population of COVID-19 patients treated with CPAP outside ICU. Intubation delay represents a risk factor for mortality. Further investigation is needed for early identification of CPAP failures.

14.
Cells ; 10(1)2021 01 07.
Article in English | MEDLINE | ID: covidwho-1028162

ABSTRACT

Sars-Cov-2 infection causes fever and cough that may rapidly lead to acute respiratory distress syndrome (ARDS). Few biomarkers have been identified but, unfortunately, these are individually poorly specific, and novel biomarkers are needed to better predict patient outcome. The aim of this study was to evaluate the diagnostic performance of circulating platelets (PLT)-derived extracellular vesicles (EVs) as biomarkers for Sars-Cov-2 infection, by setting a rapid and reliable test on unmanipulated blood samples. PLT-EVs were quantified by flow cytometry on two independent cohorts of Sars-CoV-2+ (n = 69), Sars-Cov-2- (n = 62) hospitalized patients, and healthy controls. Diagnostic performance of PLT-EVs was evaluated by receiver operating characteristic (ROC) curve. PLT-EVs count were higher in Sars-Cov-2+ compared to Sars-Cov-2- patients or HC. ROC analysis of the combined cohorts showed an AUC = 0.79 and an optimal cut-off value of 1472 EVs/µL, with 75% sensitivity and 74% specificity. These data suggest that PLT-EVs might be an interesting biomarker deserving further investigations to test their predictive power.


Subject(s)
Blood Platelets/metabolism , COVID-19/blood , Extracellular Vesicles/metabolism , Aged , Aged, 80 and over , Biomarkers/blood , Blood Platelets/pathology , COVID-19/epidemiology , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests
15.
Disaster Med Public Health Prep ; 14(5): 638-642, 2020 10.
Article in English | MEDLINE | ID: covidwho-1028073

ABSTRACT

OBJECTIVES: Italy has been one of the first countries to implement mitigation measures to curb the coronavirus disease 2019 (COVID-19) pandemic. There is currently a debate on when and how such measures should be loosened. To forecast the demand for hospital intensive care unit (ICU) and non-ICU beds for COVID-19 patients from May to September, we developed 2 models, assuming a gradual easing of restrictions or an intermittent lockdown. METHODS: We used a compartmental model to evaluate 2 scenarios: (A) an intermittent lockdown; (B) a gradual relaxation of the lockdown. Predicted ICU and non-ICU demand was compared with the peak in hospital bed use observed in April 2020. RESULTS: Under scenario A, while ICU demand will remain below the peak, the number of non-ICU will substantially rise and will exceed it (133%; 95% confidence interval [CI]: 94-171). Under scenario B, a rise in ICU and non-ICU demand will start in July and will progressively increase over the summer 2020, reaching 95% (95% CI: 71-121) and 237% (95% CI: 191-282) of the April peak. CONCLUSIONS: Italian hospital demand is likely to remain high in the next months. If restrictions are reduced, planning for the next several months should consider an increase in health-care resources to maintain surge capacity across the country.


Subject(s)
COVID-19/complications , Health Services Needs and Demand/statistics & numerical data , Pandemics/prevention & control , Quarantine/methods , Surge Capacity/standards , COVID-19/epidemiology , Hospitalization/statistics & numerical data , Hospitals/statistics & numerical data , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Italy/epidemiology , Pandemics/statistics & numerical data , Quarantine/standards , Quarantine/statistics & numerical data , Surge Capacity/statistics & numerical data
16.
Cells ; 10(1)2021 01 07.
Article in English | MEDLINE | ID: covidwho-1016106

ABSTRACT

Sars-Cov-2 infection causes fever and cough that may rapidly lead to acute respiratory distress syndrome (ARDS). Few biomarkers have been identified but, unfortunately, these are individually poorly specific, and novel biomarkers are needed to better predict patient outcome. The aim of this study was to evaluate the diagnostic performance of circulating platelets (PLT)-derived extracellular vesicles (EVs) as biomarkers for Sars-Cov-2 infection, by setting a rapid and reliable test on unmanipulated blood samples. PLT-EVs were quantified by flow cytometry on two independent cohorts of Sars-CoV-2+ (n = 69), Sars-Cov-2- (n = 62) hospitalized patients, and healthy controls. Diagnostic performance of PLT-EVs was evaluated by receiver operating characteristic (ROC) curve. PLT-EVs count were higher in Sars-Cov-2+ compared to Sars-Cov-2- patients or HC. ROC analysis of the combined cohorts showed an AUC = 0.79 and an optimal cut-off value of 1472 EVs/µL, with 75% sensitivity and 74% specificity. These data suggest that PLT-EVs might be an interesting biomarker deserving further investigations to test their predictive power.


Subject(s)
Blood Platelets/metabolism , COVID-19/blood , Extracellular Vesicles/metabolism , Aged , Aged, 80 and over , Biomarkers/blood , Blood Platelets/pathology , COVID-19/epidemiology , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests
17.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-927563

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets.


Subject(s)
Coronavirus Infections/metabolism , Metabolome , Pneumonia, Viral/metabolism , Aged , Aged, 80 and over , Amino Acids/blood , Arachidonic Acid/blood , Biomarkers/blood , COVID-19 , Citric Acid Cycle , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , Gluconeogenesis , Humans , Male , Middle Aged , Oleic Acid/blood , Pandemics , Phosphatidylcholines/blood , Phosphatidylethanolamines/blood , Phospholipases A2/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Triglycerides/blood
18.
J Clin Neurosci ; 79: 71-73, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-650755

ABSTRACT

We describe a patient affected by Covid-19 acute respiratory distress syndrome with a cerebral nervous system vasculitis triggered by SARS-Cov-2, managed at the University hospital, in Novara, Italy in the area most impacted by the pandemic and where 749 Covid-19 positive patients were admitted from March 1st until April 25th, 2020.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Pneumonia, Viral/complications , Vasculitis, Central Nervous System/etiology , COVID-19 , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pandemics , SARS-CoV-2 , Vasculitis, Central Nervous System/diagnostic imaging
19.
Crit Care ; 24(1): 365, 2020 06 19.
Article in English | MEDLINE | ID: covidwho-608395

ABSTRACT

In this viewpoint, we summarize the relevance of thromboinflammation in COVID-19 and discuss potential mechanisms of endothelial injury as a key point for the development of lung and distant organ dysfunction, with a focus on direct viral infection and cytokine-mediated injury. Entanglement between inflammation and coagulation and resistance to heparin provide a rationale to consider other therapeutic approaches in order to preserve endothelial function and limit microthrombosis, especially in severe forms. These strategies include nebulized heparin, N-acetylcysteine, plasma exchange and/or fresh frozen plasma, plasma derivatives to increase the level of endogenous anticoagulants (tissue factor pathway inhibitor, activated protein C, thrombomodulin, antithrombin), dipyridamole, complement blockers, different types of stem cells, and extracellular vesicles. An integrated therapy including these drugs has the potential to improve outcomes in COVID-19.


Subject(s)
Coronavirus Infections/therapy , Endothelial Cells/physiology , Inflammation/prevention & control , Pneumonia, Viral/therapy , Thrombosis/prevention & control , COVID-19 , Coronavirus Infections/physiopathology , Humans , Pandemics , Pneumonia, Viral/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL