Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Geroscience ; 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1782920

ABSTRACT

The objectives of this study were to assess the dynamics of the SARS-CoV-2 anti-RBD-IgG response over time among older people after COVID-19 infection or vaccination and its comparison with indicative levels of protection. Geriatric patients with SARS-CoV-2 serological test results were included and divided into three groups. A vaccine group (n = 34), a group of natural COVID-19 infection (n = 32), and a group who contracted COVID-19 less than 15 days after the first injection (n = 17). Eighty-three patients were included; the median age with IQR was 87 (81-91) years. In the vaccine group at 1 month since the first vaccination, the median titer of anti-RBD-IgG was 620 (217-1874) BAU/ml with 87% of patients above the theoretical protective threshold of 141 BAU/ml according to Dimeglio et al. (J Infec. 84(2):248-88, [7]). Seven months after the first vaccination, this titer decreased to 30 (19-58) BAU/ml with 9.5% of patients > 141 BAU/ml. In the natural COVID-19 infection group, at 1 month since the date of first symptom onset, the median titer was 798 (325-1320) BAU/ml with 86.7% of patients > 141 BAU/ml and fell to 88 (37-385) with 42.9% of patients > 141 BAU/ml at 2 months. The natural infection group was vaccinated 3 months after the infection. Five months after the vaccination cycle, the median titer was 2048 (471-4386) BAU/ml with 83.3% of patients > 141 BAU/ml. This supports the clinical results describing the decrease in vaccine protection over time and suggests that vaccination after infection can maintain significantly higher antibody titer levels for a prolonged period of time.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330752

ABSTRACT

While the combination of casirivimab –imdevimab (Ronapreve™ Roche Regeneron) has been shown to confer satisfactory protection against the delta variant kidney transplant recipients (KTRs) with COVID –19, it has limited neutralizing activity against the current variants of concern (Omicron BA.1 , BA.1.1 and BA.2). In contrast, cilgavimab –tixagevimab combination (Evusheld™, Astra Zeneca) retains a partial neutralizing activity against omicron in vitro. We examined whether preexposure prophylaxis with Evusheld™ can effectively protect kidney transplant recipients (KTRs) against the Omicron variant. Of the 416 KTRs who received intramuscular prophylactic injections of Evusheld™ (150 mg tixagevimab and 150 mg cilgavimab), 39 (9.4%) developed COVID-19. With the exception of one patient, all KTRs were symptomatic. Hospitalization and admission to an intensive care unit were required for 14 (35.9%) and three patients, respectively. Two KTRs died of COVID-19-related acute respiratory distress syndrome. SARS-CoV-2 sequencing was carried out in 15 cases (BA.1, n = 5;BA.1.1, n = 9;BA.2, n=1). Viral neutralizing activity of the serum against BA.1 variant was negative in the 12 tested patients, suggesting that this prophylaxis strategy provides insufficient protection against this variant of concern . Preexposure prophylaxis with Evusheld™ does not adequately protect KTRs against Omicron. Further clarification of the optimal dosing can assist in our understanding of how best to harness its protective potential.

3.
Infect Dis Now ; 52(1): 23-30, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1661845

ABSTRACT

OBJECTIVES: Strasbourg University Hospital faced an important COVID-19 first wave from early March 2020. We performed a longitudinal prospective cohort study to describe clinical and virological data, exposure history to COVID-19, and adherence to strict hygiene standards during the first pandemic wave in 1497 workers undergoing a SARS-CoV-2 serological test at our hospital, with a follow up of serology result three months later. PATIENTS AND METHODS: A total of 1497 patients were enrolled from April 6 to May 7, 2020. Antibody response to SARS-CoV-2 was measured, and COVID-19 exposure routes were analyzed according to SARS-CoV-2 serological status. RESULTS: A total of 515 patients (34.4%) were seropositive, mainly medical students (13.2%) and assistant nurses (12.0%). A history of COVID-19 exposure in a professional and/or private setting was mentioned by 83.1% of seropositive subjects (P<0.05; odds ratio [OR]: 2.5; 95% confidence interval [CI]: 1.8-3.4). COVID-19 exposure factors associated with seropositive status were non-professional exposure (OR: 1.9, 95% CI: 1.3-2.7), especially outside the immediate family circle (OR: 2.2, 95% CI: 1.2-3.9) and contact with a COVID-19 patient (OR: 1.6; 95% CI: 1.1-2.2). Among professionally exposed workers, systematic adherence to strict hygiene standards was well observed, except for the use of a surgical mask (P<0.05, OR: 1.9, 95% CI: 1.3-2.8). Of those who reported occasionally or never wearing a surgical mask, nurses (25.7%), assistant nurses (16.2%), and medical students (11.7%) were predominant. CONCLUSION: Infection of staff members during the first pandemic wave in our hospital occurred after both professional and private COVID-19 exposure, underlining the importance of continuous training in strict hygiene standards.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals, University , Humans , Pandemics , Personnel, Hospital , Prospective Studies
4.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-294752

ABSTRACT

Assessment of the kinetics of SARS-CoV-2 antibodies is essential in predicting protection against reinfection and durability of vaccine protection. Here, we longitudinally measured Spike (S) and Nucleocapsid (N)-specific antibodies in 1,309 healthcare workers (HCWs), including 916 COVID-19 negative HCWs and 393 convalescent COVID-19 for up to 422 days post-symptom. From month (M)1 to M7-9 post-infection, SARS-CoV-2 antibodies decreased moderately in convalescent HCWs in a biphasic model, with men showing a slower decay of anti-N (p=0.02), and a faster decay of anti-S (p=0.0008) than women. At M11-13, anti-N dramatically decreased (half-life: 283 days) while anti-S stabilized (half-life: 725 days) at a median of 2.39 log Arbitrary Units (AU)/mL (Interquartile Range (IQR): 2.10 -2.75). Overall, 69 SARS-CoV-2 infections developed in the COVID-19 negative group (incidence of 12.22 per 100 person-years) versus one in the COVID-19 positive group (incidence of 0.40 per 100 person-years), indicating a relative reduction in the incidence of SARS-CoV-2 reinfection of 96.7% (p<0.0001). Correlation with live-virus neutralization assay revealed that variants D614G and B.1.1.7, but not B.1.351, were sensitive to anti-S antibodies at 2.3 log AU/mL, while IgG ≥ 3 log AU/mL neutralized all three variants. After SARS-CoV-2 vaccination, anti-S levels reached at least 3 logs regardless of pre-vaccination IgG levels, type of vaccine, and number of doses. Our study demonstrates a long-term persistence of anti-S IgG antibodies that may protect against reinfection. By significantly increasing cross-neutralizing antibody titers, a single-dose vaccination strengthens protection against escape mutants.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293037

ABSTRACT

INTRODUCTION The objectives of this study were to assess the dynamics of the SARS-CoV-2 anti-RBD IgG response over time among older people after COVID-19 infection or vaccination and its comparison with speculative levels of protection assumed by current data. METHODS From November 2020 to October 2021, we included geriatric patients with serological test results for COVID-19. We considered antibody titre thresholds thought to be high enough to protect against SARS-CoV-2 infection: 141 BAU/ml for protection/vaccine efficacy > 89.3%. Three cohorts are presented. A vaccine group (n=34) that received two BNT162b2/Comirnaty injections 21 days apart, a group of natural COVID-19 infection (n=32) and a third group who contracted COVID-19 less than 15 days after the first BNT162b2/Comirnaty injection (n=17). RESULTS 83 patients were included, the median age was 87 (81-91) years. In the vaccine group at 1 month since the first vaccination, the median BAU/ml with IQR was 620 (217-1874) with 87% of patients above the threshold of 141 BAU/ml. Seven months after the first vaccination the BAU/ml was 30 (19-58) with 9.5% of patients above the threshold of 141 BAU/ml. In the natural COVID-19 infection group, at 1 month since the date of first symptom onset, the median BAU/ml was 798 (325-1320) with 86.7% of patients above the threshold of 141 BAU/ml and fell to 88 (37-385) with 42.9% of patients above the threshold of 141 BAU/ml at 2 months. The natural infection group was vaccinated three months after the infection. Five months after the end of the vaccination cycle the BAU/ml was 2048 (471-4386) with 83.3% of patients above the threshold of 141 BAU/ml. DISCUSSION On the humoral level, this supports the clinical results describing the decrease in vaccine protection over time.

6.
J Infect Dis ; 224(9): 1489-1499, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522216

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , Antibody Formation , Antibody Specificity , COVID-19/epidemiology , Female , France/epidemiology , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , Young Adult
7.
J Infect Dis ; 224(6): 983-988, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1455308

ABSTRACT

We measured anti-spike (S), nucleoprotein (N), and neutralizing antibodies in sera from 308 healthcare workers with a positive reverse-transcription quantitative polymerase chain reaction result for severe acute respiratory syndrome coronavirus 2 and with mild disease, collected at 2 timepoints up to 6 months after symptom onset. At month 1, anti-S and -N antibody levels were higher in male participants aged >50 years and participants with a body mass index (BMI) >25 kg/m2. At months 3-6, anti-S and anti-N antibodies were detected in 99% and 59% of individuals, respectively. Anti-S antibodies and neutralizing antibodies declined faster in men than in women, independent of age and BMI, suggesting an association of sex with evolution of the humoral response.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/immunology , Sex Characteristics , Adult , Antibodies, Viral/blood , Female , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
10.
EBioMedicine ; 71: 103561, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1372964

ABSTRACT

BACKGROUND: Assessment of the kinetics of SARS-CoV-2 antibodies is essential in predicting risk of reinfection and durability of vaccine protection. METHODS: This is a prospective, monocentric, longitudinal, cohort clinical study. Healthcare workers (HCW) from Strasbourg University Hospital were enrolled between April 6th and May 7th, 2020 and followed up to 422 days. Serial serum samples were tested for antibodies against the Receptor Binding Domain (RBD) of the spike protein and nucleocapsid protein (N) to characterize the kinetics of SARS-CoV-2 antibodies and the incidence of reinfection. Live-neutralization assays were performed for a subset of samples before and after vaccination to analyze sensitivity to SARS-CoV-2 variants. FINDINGS: A total of 4290 samples from 393 convalescent COVID-19 and 916 COVID-19 negative individuals were analyzed. In convalescent individuals, SARS-CoV-2 antibodies followed a triphasic kinetic model with half-lives at month (M) 11-13 of 283 days (95% CI 231-349) for anti-N and 725 days (95% CI 623-921) for anti-RBD IgG, which stabilized at a median of 1.54 log BAU/mL (95% CI 1.42-1.67). The incidence of SARS-CoV-2 infections was 12.22 and 0.40 per 100 person-years in COVID-19-negative and COVID-19-positive HCW, respectively, indicating a relative reduction in the incidence of SARS-CoV-2 reinfection of 96.7%. Live-virus neutralization assay revealed that after one year, variants D614G and B.1.1.7, but less so B.1.351, were sensitive to anti-RBD antibodies at 1.4 log BAU/mL, while IgG ≥ 2.0 log BAU/mL strongly neutralized all three variants. These latter anti-RBD IgG titers were reached by all vaccinated HCW regardless of pre-vaccination IgG levels and type of vaccine. INTERPRETATION: Our study demonstrates a long-term persistence of anti-RBD antibodies that may reduce risk of reinfection. By significantly increasing cross-neutralizing antibody titers, a single-dose vaccination strengthens protection against variants. FUN1DING: None.


Subject(s)
COVID-19/pathology , Immunity, Humoral , Reinfection/pathology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Kinetics , Longitudinal Studies , Male , Middle Aged , Phosphoproteins/immunology , Prospective Studies , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Time Factors
11.
ESC Heart Fail ; 8(5): 4307-4312, 2021 10.
Article in English | MEDLINE | ID: covidwho-1332963

ABSTRACT

Here, we present the case of an 81-year-old male patient, who was hospitalized for a severe form of COVID-19. Transthoracic echocardiogram (TTE) performed 1 month after symptom onset was normal. Respiratory evolution was favourable, and the patient was discharged at Day 78. At 6 months, despite a good functional recovery, he presented pulmonary sequelae, and the TTE revealed a clear reduction of left ventricular ejection fraction (LVEF) and mild LV dilatation without cardiac symptoms. The cardiac magnetic resonance (CMR) using Lake Louise Criteria (LLC), T1 and T2 mapping showed focal infero-basal LV wall oedema, elevated T1 and T2 myocardial relaxation times especially in basal inferior and infero-lateral LV walls, and sub-epicardial late gadolinium enhancement in those LV walls. The diagnosis of active myocarditis was raised especially based on TTE abnormalities and CMR LLC, T1 and T2 mapping. Currently, we are not aware of published reports of a 6 month post-COVID-19 active myocarditis.


Subject(s)
COVID-19 , Myocarditis , Aged, 80 and over , Contrast Media , Follow-Up Studies , Gadolinium , Humans , Male , Myocarditis/diagnosis , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
12.
J Infect Dis ; 224(9): 1489-1499, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1317919

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , Antibody Formation , Antibody Specificity , COVID-19/epidemiology , Female , France/epidemiology , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , Young Adult
14.
Nature ; 596(7871): 276-280, 2021 08.
Article in English | MEDLINE | ID: covidwho-1301174

ABSTRACT

The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Convalescence , Immune Evasion/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , France , Humans , India/epidemiology , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
19.
Front Microbiol ; 11: 603931, 2020.
Article in English | MEDLINE | ID: covidwho-979023

ABSTRACT

Despite efforts to develop anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody (Ab) immunoassays, reliable serological methods are still needed. We developed a multiplex addressable laser bead immunoassay (ALBIA) to detect and quantify anti-Spike S1 and nucleocapsid N Abs. Recombinant S1 and N proteins were bound to fluorescent beads (ALBIA-IgG-S1/N). Abs were revealed using class-specific anti-human Ig Abs. The performances of the test were analyzed on 575 serum samples including 192 from SARS-CoV-2 polymerase chain reaction-confirmed patients, 13 from seasonal coronaviruses, 70 from different inflammatory/autoimmune diseases, and 300 from healthy donors. Anti-S1 IgM were detected by monoplex ALBIA-IgM-S1. Comparison with chemiluminescent assays or enzyme-linked immunosorbent assays was performed using commercial tests. Multiplex ALBIA-IgG-S1/N was effective in detecting and quantifying anti-SARS-CoV-2 IgG Abs. Two weeks after first symptoms, sensitivity and specificity were 97.7 and 98.0% (anti-S1), and 100 and 98.7% (anti-N), respectively. Agreement with commercial tests was good to excellent, with a higher sensitivity of ALBIA. ALBIA-IgG-S1/N was positive in 53% of patients up to day 7, and in 75% between days 7 and 13. For ALBIA-IgM-S1, sensitivity and specificity were 74.4 and 98.7%, respectively. Patients in intensive care units had higher IgG Ab levels (Mann-Whitney test, p < 0.05). ALBIA provides a robust method for exploring humoral immunity to SARS-CoV-2. Serology should be performed after 2 weeks following first symptoms, when all COVID-19 (coronavirus disease 2019) patients had at least one anti-S1 or anti-N IgG Ab, illustrating the interest of a multiplex test.

20.
Emerg Infect Dis ; 27(1)2021 01.
Article in English | MEDLINE | ID: covidwho-954408

ABSTRACT

We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies and T-cell responses against SARS-CoV-2 and human coronavirus (HCoV) 229E and OC43 in 11 SARS-CoV-2 serodiscordant couples in Strausbourg, France, in which 1 partner had evidence of mild coronavirus disease (COVID-19) and in 10 unexposed healthy controls. Patients with confirmed COVID-19 were considered index patients and their partners close contacts. All index patients displayed positive SARS-CoV-2-specific antibody and T-cell responses that lasted up to 102 days after symptom onset. All contacts remained seronegative for SARS-CoV-2; however, 6 reported COVID-19 symptoms within a median of 7 days after their partners, and 4 of those showed a positive SARS-CoV-2-specific T-cell response against 3 or 4 SARS-CoV-2 antigens that lasted up to 93 days after symptom onset. The 11 couples and controls displayed positive T-cell responses against HCoV-229E or HCoV-OC43. These data suggest that exposure to SARS-CoV-2 can induce virus-specific T-cell responses without seroconversion.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/transmission , Family , SARS-CoV-2/immunology , T-Lymphocytes/physiology , Adult , Aged , COVID-19/blood , COVID-19 Testing , Case-Control Studies , Female , France/epidemiology , Humans , Immunity, Cellular , Male , Middle Aged , Seroconversion , Serologic Tests
SELECTION OF CITATIONS
SEARCH DETAIL