Unable to write in log file ../../bases/logs/gimorg/logerror.txt Search | WHO COVID-19 Research Database
Show: 20 | 50 | 100
Results 1 - 4 de 4
Crit Care Med ; 50(12): 1788-1798, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2063013


OBJECTIVES: Severe COVID-19 is associated with exaggerated complement activation. We assessed the efficacy and safety of avdoralimab (an anti-C5aR1 mAb) in severe COVID-19. DESIGN: FOR COVID Elimination (FORCE) was a double-blind, placebo-controlled study. SETTING: Twelve clinical sites in France (ICU and general hospitals). PATIENTS: Patients receiving greater than or equal to 5 L oxygen/min to maintain Sp o2 greater than 93% (World Health Organization scale ≥ 5). Patients received conventional oxygen therapy or high-flow oxygen (HFO)/noninvasive ventilation (NIV) in cohort 1; HFO, NIV, or invasive mechanical ventilation (IMV) in cohort 2; and IMV in cohort 3. INTERVENTIONS: Patients were randomly assigned, in a 1:1 ratio, to receive avdoralimab or placebo. The primary outcome was clinical status on the World Health Organization ordinal scale at days 14 and 28 for cohorts 1 and 3, and the number of ventilator-free days at day 28 (VFD28) for cohort 2. MEASUREMENTS AND MAIN RESULTS: We randomized 207 patients: 99 in cohort 1, 49 in cohort 2, and 59 in cohort 3. During hospitalization, 95% of patients received glucocorticoids. Avdoralimab did not improve World Health Organization clinical scale score on days 14 and 28 (between-group difference on day 28 of -0.26 (95% CI, -1.2 to 0.7; p = 0.7) in cohort 1 and -0.28 (95% CI, -1.8 to 1.2; p = 0.6) in cohort 3). Avdoralimab did not improve VFD28 in cohort 2 (between-group difference of -6.3 (95% CI, -13.2 to 0.7; p = 0.96) or secondary outcomes in any cohort. No subgroup of interest was identified. CONCLUSIONS: In this randomized trial in hospitalized patients with severe COVID-19 pneumonia, avdoralimab did not significantly improve clinical status at days 14 and 28 (funded by Innate Pharma, ClinicalTrials.gov number, NCT04371367).

COVID-19 , Humans , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use , Oxygen , Treatment Outcome
Arthritis Rheumatol ; 73(10): 1791-1799, 2021 10.
Article in English | MEDLINE | ID: covidwho-1391545


OBJECTIVE: Infection with the novel coronavirus SARS-CoV-2 triggers severe illness with high mortality in a subgroup of patients. Such a critical course of COVID-19 is thought to be associated with the development of cytokine storm, a condition seen in macrophage activation syndrome (MAS) and secondary hemophagocytic lymphohistiocytosis (HLH). However, specific data demonstrating a clear association of cytokine storm with severe COVID-19 are still lacking. The aim of this study was to directly address whether immune activation in COVID-19 does indeed mimic the conditions found in these classic cytokine storm syndromes. METHODS: Levels of 22 biomarkers were quantified in serum samples from patients with COVID-19 (n = 30 patients, n = 83 longitudinal samples in total), patients with secondary HLH/MAS (n = 50), and healthy controls (n = 9). Measurements were performed using bead array assays and single-marker enzyme-linked immunosorbent assay. Serum biomarker levels were assessed for correlations with disease outcome. RESULTS: In patients with secondary HLH/MAS, we observed pronounced activation of the interleukin-18 (IL-18)-interferon-γ axis, increased serum levels of IL-1 receptor antagonist, intercellular adhesion molecule 1, and IL-8, and strongly reduced levels of soluble Fas ligand in the course of SARS-CoV-2 infection. These observations appeared to discriminate immune dysregulation in critical COVID-19 from the well-recognized characteristics of other cytokine storm syndromes. CONCLUSION: Serum biomarker profiles clearly separate COVID-19 from MAS or secondary HLH in terms of distinguishing the severe systemic hyperinflammation that occurs following SARS-CoV-2 infection. These findings could be useful in determining the efficacy of drugs targeting key molecules and pathways specifically associated with systemic cytokine storm conditions in the treatment of COVID-19.

COVID-19/diagnosis , Cytokine Release Syndrome/etiology , Interleukin-18/blood , Interleukin-8/blood , Lymphohistiocytosis, Hemophagocytic/diagnosis , Macrophage Activation Syndrome/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Cytokine Release Syndrome/blood , Diagnosis, Differential , Female , Humans , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/complications , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/complications , Male , Middle Aged , Young Adult
Nature ; 588(7836): 146-150, 2020 12.
Article in English | MEDLINE | ID: covidwho-690324


Coronavirus disease 2019 (COVID-19) is a disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic1. The C5a complement factor and its receptor C5aR1 (also known as CD88) have a key role in the initiation and maintenance of several inflammatory responses by recruiting and activating neutrophils and monocytes1. Here we provide a longitudinal analysis of immune responses, including phenotypic analyses of immune cells and assessments of the soluble factors that are present in the blood and bronchoalveolar lavage fluid of patients at various stages of COVID-19 severity, including those who were paucisymptomatic or had pneumonia or acute respiratory distress syndrome. The levels of soluble C5a were increased in proportion to the severity of COVID-19 and high expression levels of C5aR1 receptors were found in blood and pulmonary myeloid cells, which supports a role for the C5a-C5aR1 axis in the pathophysiology of acute respiratory distress syndrome. Anti-C5aR1 therapeutic monoclonal antibodies prevented the C5a-mediated recruitment and activation of human myeloid cells, and inhibited acute lung injury in human C5aR1 knock-in mice. These results suggest that blockade of the C5a-C5aR1 axis could be used to limit the infiltration of myeloid cells in damaged organs and prevent the excessive lung inflammation and endothelialitis that are associated with acute respiratory distress syndrome in patients with COVID-19.

COVID-19/complications , COVID-19/immunology , Complement C5a/immunology , Inflammation/complications , Inflammation/immunology , Receptor, Anaphylatoxin C5a/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/prevention & control , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , CD11b Antigen/immunology , CD11b Antigen/metabolism , COVID-19/blood , COVID-19/pathology , Complement C5a/antagonists & inhibitors , Complement C5a/biosynthesis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Disease Models, Animal , Female , Humans , Inflammation/drug therapy , Inflammation/pathology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
Cell Mol Immunol ; 17(9): 995-997, 2020 09.
Article in English | MEDLINE | ID: covidwho-625131

Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Molecular Targeted Therapy/methods , Pneumonia, Viral/immunology , Pneumonia/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Apyrase/antagonists & inhibitors , Apyrase/genetics , Apyrase/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Betacoronavirus/immunology , COVID-19 , Case-Control Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/virology , Gene Expression/drug effects , Humans , Immunologic Factors/therapeutic use , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , Pandemics , Pneumonia/drug therapy , Pneumonia/genetics , Pneumonia/virology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology