Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Transplant ; 21(8): 2890-2894, 2021 08.
Article in English | MEDLINE | ID: covidwho-1297494

ABSTRACT

Current guidelines recommend deferring liver transplantation (LT) in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection until clinical improvement occurs and two PCR tests collected at least 24 hours apart are negative. We report a case of an 18-year-old, previously healthy African-American woman diagnosed with COVID-19, who presents with acute liver failure (ALF) requiring urgent LT in the context of SARS-CoV-2 polymerase chain reaction (PCR) positivity. The patient was thought to have acute Wilsonian crisis on the basis of hemolytic anemia, alkaline phosphatase:bilirubin ratio <4, AST:ALT ratio >2.2, elevated serum copper, and low uric acid, although an unusual presentation of COVID-19 causing ALF could not be excluded. After meeting criteria for status 1a listing, the patient underwent successful LT, despite ongoing SARS-CoV-2 PCR positivity. Remdesivir was given immediately posttransplant, and mycophenolate mofetil was withheld initially and the SARS-CoV-2 PCR test eventually became negative. Three months following transplantation, the patient has made a near-complete recovery. This case highlights that COVID-19 with SARS-CoV-2 PCR positivity may not be an absolute contraindication for transplantation in ALF. Criteria for patient selection and timing of LT amid the COVID-19 pandemic need to be validated in future studies.


Subject(s)
COVID-19 , Liver Failure, Acute , Liver Transplantation , Adolescent , Female , Humans , Liver Failure, Acute/etiology , Liver Failure, Acute/surgery , Liver Transplantation/adverse effects , Pandemics , Polymerase Chain Reaction , SARS-CoV-2
4.
Cell Death Discov ; 6(1): 141, 2020 Dec 08.
Article in English | MEDLINE | ID: covidwho-969088

ABSTRACT

COVID-19 patients show heterogeneity in clinical presentation and outcomes that makes pandemic control and strategy difficult; optimizing management requires a systems biology approach of understanding the disease. Here we sought to potentially understand and infer complex disease progression, immune regulation, and symptoms in patients infected with coronaviruses (35 SARS-CoV and 3 SARS-CoV-2 patients and 57 samples) at two different disease progression stages. Further, we compared coronavirus data with healthy individuals (n = 16) and patients with other infections (n = 144; all publicly available data). We applied inferential statistics (the COVID-engine platform) to RNA profiles (from limited number of samples) derived from peripheral blood mononuclear cells (PBMCs). Compared to healthy individuals, a subset of integrated blood-based gene profiles (signatures) distinguished acute-like (mimicking coronavirus-infected patients with prolonged hospitalization) from recovering-like patients. These signatures also hierarchically represented multiple (at the system level) parameters associated with PBMC including dysregulated cytokines, genes, pathways, networks of pathways/concepts, immune status, and cell types. Proof-of-principle observations included PBMC-based increases in cytokine storm-associated IL6, enhanced innate immunity (macrophages and neutrophils), and lower adaptive T and B cell immunity in patients with acute-like disease compared to those with recovery-like disease. Patients in the recovery-like stage showed significantly enhanced TNF, IFN-γ, anti-viral, HLA-DQA1, and HLA-F gene expression and cytolytic activity, and reduced pro-viral gene expression compared to those in the acute-like stage in PBMC. Besides, our analysis revealed overlapping genes associated with potential comorbidities (associated diabetes) and disease-like conditions (associated with thromboembolism, pneumonia, lung disease, and septicemia). Overall, our COVID-engine inferential statistics platform and study involving PBMC-based RNA profiling may help understand complex and variable system-wide responses displayed by coronavirus-infected patients with further validation.

5.
Mayo Clin Proc ; 95(11): 2382-2394, 2020 11.
Article in English | MEDLINE | ID: covidwho-912419

ABSTRACT

OBJECTIVE: To assess the efficacy and safety of lenzilumab in patients with severe coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Hospitalized patients with COVID-19 pneumonia and risk factors for poor outcomes were treated with lenzilumab 600 mg intravenously for three doses through an emergency single-use investigational new drug application. Patient characteristics, clinical and laboratory outcomes, and adverse events were recorded. We also identified a cohort of patients matched to the lenzilumab patients for age, sex, and disease severity. Study dates were March 13, 2020, to June 18, 2020. All patients were followed through hospital discharge or death. RESULTS: Twelve patients were treated with lenzilumab; 27 patients comprised the matched control cohort (untreated). Clinical improvement, defined as improvement of at least 2 points on the 8-point ordinal clinical endpoints scale, was observed in 11 of 12 (91.7%) patients treated with lenzilumab and 22 of 27 (81.5%) untreated patients. The time to clinical improvement was significantly shorter for the lenzilumab-treated group compared with the untreated cohort with a median of 5 days versus 11 days (P=.006). Similarly, the proportion of patients with acute respiratory distress syndrome (oxygen saturation/fraction of inspired oxygen<315 mm Hg) was significantly reduced over time when treated with lenzilumab compared with untreated (P<.001). Significant improvement in inflammatory markers (C-reactive protein and interleukin 6) and markers of disease severity (absolute lymphocyte count) were observed in patients who received lenzilumab, but not in untreated patients. Cytokine analysis showed a reduction in inflammatory myeloid cells 2 days after lenzilumab treatment. There were no treatment-emergent adverse events attributable to lenzilumab. CONCLUSION: In high-risk COVID-19 patients with severe pneumonia, granulocyte-macrophage colony-stimulating factor neutralization with lenzilumab was safe and associated with faster improvement in clinical outcomes, including oxygenation, and greater reductions in inflammatory markers compared with a matched control cohort of patients hospitalized with severe COVID-19 pneumonia. A randomized, placebo-controlled clinical trial to validate these findings is ongoing (NCT04351152).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , SARS-CoV-2 , Aged , COVID-19/epidemiology , COVID-19/metabolism , Dose-Response Relationship, Drug , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Infusions, Intravenous , Male , Middle Aged , Pandemics , Treatment Outcome
6.
Elife ; 92020 07 07.
Article in English | MEDLINE | ID: covidwho-635065

ABSTRACT

Understanding temporal dynamics of COVID-19 symptoms could provide fine-grained resolution to guide clinical decision-making. Here, we use deep neural networks over an institution-wide platform for the augmented curation of clinical notes from 77,167 patients subjected to COVID-19 PCR testing. By contrasting Electronic Health Record (EHR)-derived symptoms of COVID-19-positive (COVIDpos; n = 2,317) versus COVID-19-negative (COVIDneg; n = 74,850) patients for the week preceding the PCR testing date, we identify anosmia/dysgeusia (27.1-fold), fever/chills (2.6-fold), respiratory difficulty (2.2-fold), cough (2.2-fold), myalgia/arthralgia (2-fold), and diarrhea (1.4-fold) as significantly amplified in COVIDpos over COVIDneg patients. The combination of cough and fever/chills has 4.2-fold amplification in COVIDpos patients during the week prior to PCR testing, in addition to anosmia/dysgeusia, constitutes the earliest EHR-derived signature of COVID-19. This study introduces an Augmented Intelligence platform for the real-time synthesis of institutional biomedical knowledge. The platform holds tremendous potential for scaling up curation throughput, thus enabling EHR-powered early disease diagnosis.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Chills/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Diarrhea/virology , Dysgeusia/virology , Female , Fever/virology , Humans , Male , Middle Aged , Myalgia/virology , Olfaction Disorders/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...