Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Metabolites ; 12(7)2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1917624

ABSTRACT

COVID-19 is characterised by a dysregulated immune response, that involves signalling lipids acting as mediators of the inflammatory process along the innate and adaptive phases. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The second publication in a series reports the results of quantitative LC-MS/MS profiling of 63 small lipids including oxylipins, free fatty acids, and endocannabinoids. Compared to samples taken from ward patients, intensive care unit (ICU) patients had 2-4-fold lower levels of arachidonic acid (AA) and its cyclooxygenase-derived prostanoids, as well as lipoxygenase derivatives, exhibiting negative correlations with inflammation markers. The same derivatives showed 2-5-fold increases in recovering ward patients, in paired comparison to early hospitalisation. In contrast, ICU patients showed elevated levels of oxylipins derived from poly-unsaturated fatty acids (PUFA) by non-enzymatic peroxidation or activity of soluble epoxide hydrolase (sEH), and these oxylipins positively correlated with markers of macrophage activation. The deficiency in AA enzymatic products and the lack of elevated intermediates of pro-resolving mediating lipids may result from the preference of alternative metabolic conversions rather than diminished stores of PUFA precursors. Supporting this, ICU patients showed 2-to-11-fold higher levels of linoleic acid (LA) and the corresponding fatty acyl glycerols of AA and LA, all strongly correlated with multiple markers of excessive immune response. Our results suggest that the altered oxylipin metabolism disrupts the expected shift from innate immune response to resolution of inflammation.

2.
Metabolites ; 12(7)2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1917623

ABSTRACT

The COVID-19 pandemic raised a need to characterise the biochemical response to SARS-CoV-2 infection and find biological markers to identify therapeutic targets. In support of these aims, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The first publication in a series reports the results of quantitative LC-MS/MS profiling of 56 amino acids and derivatives. A comparison between samples taken from ICU and ward patients revealed a notable increase in ten post-translationally modified amino acids that correlated with markers indicative of an excessive immune response: TNF-alpha, neutrophils, markers for macrophage, and leukocyte activation. Severe patients also had increased kynurenine, positively correlated with CRP and cytokines that induce its production. ICU and ward patients with high IL-6 showed decreased levels of 22 immune-supporting and anti-oxidative amino acids and derivatives (e.g., glutathione, GABA). These negatively correlated with CRP and IL-6 and positively correlated with markers indicative of adaptive immune activation. Including corresponding alterations in convalescing ward patients, the overall metabolic picture of severe COVID-19 reflected enhanced metabolic demands to maintain cell proliferation and redox balance, alongside increased inflammation and oxidative stress.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-309398

ABSTRACT

The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss, and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls of scientists in that direction, we have put forward seven long term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on an effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social-ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social-ecosystems locally: the “ecological health observatories”and the “living laboratories”. This work has been carried out in the frame of the EC project HERA (www.HERAresearchEU.eu) that aims to set the priorities for an environment, climate and health research agenda in the EU by adopting a systemic approach in the face of global environmental change.

5.
Occupational and Environmental Medicine ; 78(Suppl 1):A155, 2021.
Article in English | ProQuest Central | ID: covidwho-1480285

ABSTRACT

IntroductionWorking life exposures contribute significantly to non-communicable disease development. However, the challenge remains on how to map occupational exposures during the entire career and link exposures with health outcomes. In this context, the EU EPHOR project aims to characterize the internal exposome, by characterizing exposure biomarkers and biological pathways to link external exposure and health effects. While there is a range of strategies available to monitor the internal exposome, these conventional methods often require invasive collection of biological samples and/or high volumes. However, the ongoing COVID-19 pandemic forces us to look also at other approaches to obtain biological samples.ObjectiveWe aimed to explore the use of self-sampling techniques in an occupational exposome context.MethodsWe have conducted a semi-systematic literature review to identify self-sampling techniques used to generate high quality data on several biomarkers of exposure and effect. We are exploring the possibility of using these self-sampling techniques through a pilot study. A tiered analytical approach along with a biological sequence will be followed to efficiently analyze the samples (i.e. blood, urine, saliva, exhaled breath, exhaled breath aerosols and exhaled breath condensate) for a broad spectrum of biomarkers and omics. Additionally, non-invasive targeted and non-targeted exposome markers of acute lung function decline and inflammation will be developed through proteomic analysis of exhaled breath condensate (EBC), and exhaled breath VOCs using the ReCIVA Breath Sampler. These data will be integrated to generate signatures or ‘fingerprints’ of exposomes, at individual and group levels.Results and ConclusionThe developed methodology will be applied in 2 cohorts within the EPHOR project: shift-workers and workers with asthma or allergic rhinitis to assess the internal exposure and elucidate biological pathways in disease development.

6.
Environ Int ; 158: 106915, 2022 01.
Article in English | MEDLINE | ID: covidwho-1458591

ABSTRACT

The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change.


Subject(s)
COVID-19 , Pandemics , Animals , Ecosystem , Humans , Pandemics/prevention & control , SARS-CoV-2 , Social Environment
7.
Eur Cytokine Netw ; 31(4): 154-167, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1115342

ABSTRACT

COVID-19 differs substantially between individuals, ranging from mild to severe or even fatal. Heterogeneity in the immune response against SARS-COV-2 likely contributes to this. Therefore, we explored the temporal dynamics of key cellular and soluble mediators of innate and adaptive immune activation in relation to COVID-19 severity and progression. Forty-four patients with a PCR-proven diagnosis of COVID-19 were included. Extensive cellular (leukocytes and T-lymphocyte subsets) and serological immune profiling (cytokines, soluble cell surface molecules, and SARS-CoV-2 antibodies) was performed at hospital admission and every 3-4 days during hospitalization. Measurements and disease outcome were compared between patients with an unfavorable (IC admission and/or death) and favorable (all others) outcome. Patients with an unfavorable outcome had higher leukocyte numbers at baseline, mostly due to increased neutrophils, whereas lymphocyte and monocyte numbers were reduced. CRP, IL-6, CCL2, CXCL10, and GM-CSF levels were higher at baseline in the unfavorable group, whereas IL-7 levels were lower. SARS-CoV-2 antibodies were more frequently absent in the unfavorable group. Longitudinal analysis revealed delayed kinetics of activated CD4 and CD8 T-lymphocyte subsets in the unfavorable group. Furthermore, whereas CRP, IL-6, CXCL10, and GM-CSF declined in the favorable group, these cytokines declined with delayed kinetics, remained increased, or even increased further in the unfavorable group. Our data indicate a state of increased innate immune activation in COVID19-patients with an unfavorable outcome at hospital admission, which remained over time, as compared with patients with a favorable outcome.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , COVID-19/immunology , COVID-19/mortality , Cytokines/immunology , Female , Humans , Male , Middle Aged , Severity of Illness Index
8.
Eur J Epidemiol ; 36(3): 299-309, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1081471

ABSTRACT

Most studies of severe/fatal COVID-19 risk have used routine/hospitalisation data without detailed pre-morbid characterisation. Using the community-based UK Biobank cohort, we investigate risk factors for COVID-19 mortality in comparison with non-COVID-19 mortality. We investigated demographic, social (education, income, housing, employment), lifestyle (smoking, drinking, body mass index), biological (lipids, cystatin C, vitamin D), medical (comorbidities, medications) and environmental (air pollution) data from UK Biobank (N = 473,550) in relation to 459 COVID-19 and 2626 non-COVID-19 deaths to 21 September 2020. We used univariate, multivariable and penalised regression models. Age (OR = 2.76 [2.18-3.49] per S.D. [8.1 years], p = 2.6 × 10-17), male sex (OR = 1.47 [1.26-1.73], p = 1.3 × 10-6) and Black versus White ethnicity (OR = 1.21 [1.12-1.29], p = 3.0 × 10-7) were independently associated with and jointly explanatory of (area under receiver operating characteristic curve, AUC = 0.79) increased risk of COVID-19 mortality. In multivariable regression, alongside demographic covariates, being a healthcare worker, current smoker, having cardiovascular disease, hypertension, diabetes, autoimmune disease, and oral steroid use at enrolment were independently associated with COVID-19 mortality. Penalised regression models selected income, cardiovascular disease, hypertension, diabetes, cystatin C, and oral steroid use as jointly contributing to COVID-19 mortality risk; Black ethnicity, hypertension and oral steroid use contributed to COVID-19 but not non-COVID-19 mortality. Age, male sex and Black ethnicity, as well as comorbidities and oral steroid use at enrolment were associated with increased risk of COVID-19 death. Our results suggest that previously reported associations of COVID-19 mortality with body mass index, low vitamin D, air pollutants, renin-angiotensin-aldosterone system inhibitors may be explained by the aforementioned factors.


Subject(s)
COVID-19/epidemiology , Age Factors , Aged , Aged, 80 and over , Biological Specimen Banks , COVID-19/mortality , Comorbidity , Environment , Female , Health Behavior , Humans , Life Style , Lipids/blood , Male , Middle Aged , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors , United Kingdom/epidemiology
9.
Int J Epidemiol ; 49(5): 1454-1467, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1066329

ABSTRACT

BACKGROUND: The recent COVID-19 outbreak has generated an unprecedented public health crisis, with millions of infections and hundreds of thousands of deaths worldwide. Using hospital-based or mortality data, several COVID-19 risk factors have been identified, but these may be confounded or biased. METHODS: Using SARS-CoV-2 infection test data (n = 4509 tests; 1325 positive) from Public Health England, linked to the UK Biobank study, we explored the contribution of demographic, social, health risk, medical and environmental factors to COVID-19 risk. We used multivariable and penalized logistic regression models for the risk of (i) being tested, (ii) testing positive/negative in the study population and, adopting a test negative design, (iii) the risk of testing positive within the tested population. RESULTS: In the fully adjusted model, variables independently associated with the risk of being tested for COVID-19 with odds ratio >1.05 were: male sex; Black ethnicity; social disadvantage (as measured by education, housing and income); occupation (healthcare worker, retired, unemployed); ever smoker; severely obese; comorbidities; and greater exposure to particulate matter (PM) 2.5 absorbance. Of these, only male sex, non-White ethnicity and lower educational attainment, and none of the comorbidities or health risk factors, were associated with testing positive among tested individuals. CONCLUSIONS: We adopted a careful and exhaustive approach within a large population-based cohort, which enabled us to triangulate evidence linking male sex, lower educational attainment and non-White ethnicity with the risk of COVID-19. The elucidation of the joint and independent effects of these factors is a high-priority area for further research to inform on the natural history of COVID-19.


Subject(s)
COVID-19 Testing , COVID-19 , Confounding Factors, Epidemiologic , Biological Specimen Banks/standards , Biological Specimen Banks/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Risk Assessment/methods , Risk Factors , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology
11.
Environ Int ; 146: 106272, 2021 01.
Article in English | MEDLINE | ID: covidwho-943095

ABSTRACT

The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs.


Subject(s)
Air Pollution , COVID-19 , Animals , Climate , Humans , Pandemics , SARS-CoV-2
12.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-1382

ABSTRACT

Background: The recent COVID-19 outbreak has generated an unprecedented public health crisis, with over 3 million infections and almost 250,000 deaths worldwide

SELECTION OF CITATIONS
SEARCH DETAIL