Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Lancet Respir Med ; 10(2): 127-128, 2022 02.
Article in English | MEDLINE | ID: covidwho-1751528
4.
J Fungi (Basel) ; 8(2)2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1625008

ABSTRACT

BACKGROUND: Critically ill COVID-19 patients have proven to be at risk for developing invasive fungal infections. However, the incidence and impact of possible/probable COVID-19-associated pulmonary aspergillosis (CAPA) in severe COVID-19 patients varies between cohorts. We aimed to assess the incidence, risk factors, and clinical outcome of invasive pulmonary aspergillosis in a regional cohort of COVID-19 intensive care patients. METHODS: We performed a regional, multicentre, retrospective cohort study in the intensive care units (ICUs) in North Brabant, The Netherlands. We included adult patients with rt-PCR-confirmed SARS-CoV-2 infection (COVID-19), requiring mechanical ventilation for acute respiratory distress syndrome. Demographics, clinical course, biomarker value, and treatment outcomes were compared between the groups with possible/probable CAPA from the main study centre and the regional centres, and without signs of CAPA from the main study centre as controls. The primary aim was to assess the regional impact of possible/probable CAPA in COVID-19 ICU patients, measured as all-cause mortality at 30 days after ICU admission. Secondary outcomes were risk factors for developing CAPA, based on underlying host factors and to identify the value of the mycological arguments for the diagnosing of CAPA. RESULTS: Between 1 March and 30 April 2020, we included 123 patients with severe COVID-19: 29 patients (30.9%) in the main ICU with possible/probable CAPA, and 65 (69.1%) with no signs of CAPA; 29 patients in the regional ICUs with signs of CAPA. Patients' characteristics and risk factors did not differ for CAPA and non-CAPA patients. Patients with COPD and/or chronic steroid medication developed CAPA more frequently, although this was not statistically significant. CAPA patients were admitted to the ICU earlier, had lower PF-ratios, and more often required renal replacement therapy. All-cause 30-day mortality was significantly higher in mechanically ventilated COVID-19 patients with possible/probable CAPA 39.7% (23/58) compared to patients without evidence for CAPA 16.9% (11/65) (OR 3.2 [95% CI 1.4-7.4] p = 0.005). CONCLUSION: The high incidence of possible and probable CAPA in critically ill COVID-19 patients is alarming. The increase in 30-day mortality in CAPA highlights the need for active surveillance and management strategies in critically ill COVID-19 patients.

5.
Chest ; 161(1): e5-e11, 2022 01.
Article in English | MEDLINE | ID: covidwho-1595933

ABSTRACT

CASE PRESENTATION: A 67-year-old obese man (BMI 38.0) with type 2 diabetes mellitus (DM), chronic atrial fibrillation, and chronic lymphocytic leukemia stage II, stable for 8 years after chemotherapy, and a history of smoking presented to the ED with progressive dyspnea and fever due to SARS-CoV-2 infection. He was admitted to a general ward and treated with dexamethasone (6 mg IV once daily) and oxygen. On day 3 of hospital admission, he became progressively hypoxemic and was admitted to the ICU for invasive mechanical ventilation. Dexamethasone treatment was continued, and a single dose of tocilizumab (800 mg) was administered. On day 9 of ICU admission, voriconazole treatment was initiated after tracheal white plaques at bronchoscopy, suggestive of invasive Aspergillus tracheobronchitis, were noticed. However, his medical situation dramatically deteriorated.


Subject(s)
Acute Kidney Injury/virology , Antifungal Agents/therapeutic use , COVID-19/complications , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Aged , Amphotericin B/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Atrial Fibrillation/complications , Bronchoscopy , Dexamethasone/therapeutic use , Diabetes Mellitus, Type 2/complications , Fatal Outcome , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Male , Nitriles/therapeutic use , Obesity/complications , Oxygen Inhalation Therapy , Pyridines/therapeutic use , Respiration, Artificial , SARS-CoV-2 , Smoking/adverse effects , Tomography, X-Ray Computed , Triazoles/therapeutic use , Voriconazole/therapeutic use
6.
Emerg Infect Dis ; 27(11): 2892-2898, 2021 11.
Article in English | MEDLINE | ID: covidwho-1551452

ABSTRACT

We performed an observational study to investigate intensive care unit incidence, risk factors, and outcomes of coronavirus disease-associated pulmonary aspergillosis (CAPA). We found 10%-15% CAPA incidence among 823 patients in 2 cohorts. Several factors were independently associated with CAPA in 1 cohort and mortality rates were 43%-52%.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Cohort Studies , Humans , SARS-CoV-2
7.
Clin Microbiol Infect ; 28(2): 222-238, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1525742

ABSTRACT

SCOPE: In January 2021, the ESCMID Executive Committee decided to launch a new initiative to develop ESCMID guidelines on several COVID-19-related issues, including treatment of COVID-19. METHODS: An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. Each panel met virtually once a week. For all decisions, a simple majority vote was used. A long list of clinical questions using the PICO (population, intervention, comparison, outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search with a third panellist involved in case of inconsistent results. Voting was based on the GRADE approach. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS: A synthesis of the available evidence and recommendations is provided for each of the 15 PICOs, which cover use of hydroxychloroquine, bamlanivimab alone or in combination with etesevimab, casirivimab combined with imdevimab, ivermectin, azithromycin and empirical antibiotics, colchicine, corticosteroids, convalescent plasma, favipiravir, remdesivir, tocilizumab and interferon ß-1a, as well as the utility of antifungal prophylaxis and enoxaparin. In general, the panel recommended against the use of hydroxychloroquine, ivermectin, azithromycin, colchicine and interferon ß-1a. Conditional recommendations were given for the use of monoclonal antibodies in high-risk outpatients with mild-moderate COVID-19, and remdesivir. There was insufficient evidence to make a recommendation for use of favipiravir and antifungal prophylaxis, and it was recommended that antibiotics should not be routinely prescribed in patients with COVID-19 unless bacterial coinfection or secondary infection is suspected or confirmed. Tocilizumab and corticosteroids were recommended for treatment of severe COVID-19 but not in outpatients with non-severe COVID-19. SCOPE: The aim of the present guidance is to provide evidence-based recommendations for management of adults with coronavirus disease 2019 (COVID-19). More specifically, the goal is to aid clinicians managing patients with COVID-19 at various levels of severity including outpatients, hospitalized patients, and those admitted to intensive care unit. Considering the composition of the panel, mostly clinical microbiologists or infectious disease specialists with no pulmonology or intensive care background, we focus only on pharmacological treatment and do not give recommendations on oxygen supplement/support. Similarly, as no paediatricians were included in the panel; the recommendations are only for adult patients with COVID-19. Considering the current literature, no guidance was given for special populations such as the immunocompromised.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/drug therapy , COVID-19/therapy , Humans , Immunization, Passive , Practice Guidelines as Topic , SARS-CoV-2
8.
J Clin Microbiol ; 59(12): e0122921, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1522903

ABSTRACT

The literature regarding COVID-19-associated pulmonary aspergillosis (CAPA) has shown conflicting observations, including survival of CAPA patients not receiving antifungal therapy and discrepancy between CAPA diagnosis and autopsy findings. To gain insight into the pathophysiology of CAPA, we performed a case-control study in which we compared Aspergillus test profiles in CAPA patients and controls in relation to intensive care unit (ICU) mortality. This was a multinational case-control study in which Aspergillus test results, use of antifungal therapy, and mortality were collected from critically ill COVID-19 patients. Patients were classified using the 2020 European Confederation for Medical Mycology and the International Society for Human and Animal Mycology (ECMM/ISHAM) consensus case definitions. We analyzed 219 critically ill COVID-19 cases, including 1 proven, 38 probable, 19 possible CAPA cases, 21 Aspergillus-colonized patients, 7 patients only positive for serum (1,3)-ß-d-glucan (BDG), and 133 cases with no evidence of CAPA. Mortality was 53.8% in CAPA patients compared to 24.1% in patients without CAPA (P = 0.001). Positive serum galactomannan (GM) and BDG were associated with increased mortality compared to serum biomarker-negative CAPA patients (87.5% versus 41.7%, P = 0.046; 90.0% versus 42.1%, P = 0.029, respectively). For each point increase in GM or 10-point BDG serum concentration, the odds of death increased (GM, odds ratio [OR] 10.208, 95% confidence interval [CI], 1.621 to 64.291, P = 0.013; BDG, OR, 1.247, 95% CI, 1.029 to 1.511, P = 0.024). CAPA is a complex disease, probably involving a continuum of respiratory colonization, tissue invasion, and angioinvasion. Serum biomarkers are useful for staging CAPA disease progression and, if positive, indicate angioinvasion and a high probability of mortality. There is need for a biomarker that distinguishes between respiratory tract colonization and tissue-invasive CAPA disease.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Animals , Aspergillus , Case-Control Studies , Critical Illness , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Mannans , SARS-CoV-2
10.
Emerg Infect Dis ; 27(11): 2892-2898, 2021 11.
Article in English | MEDLINE | ID: covidwho-1406813

ABSTRACT

We performed an observational study to investigate intensive care unit incidence, risk factors, and outcomes of coronavirus disease-associated pulmonary aspergillosis (CAPA). We found 10%-15% CAPA incidence among 823 patients in 2 cohorts. Several factors were independently associated with CAPA in 1 cohort and mortality rates were 43%-52%.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Cohort Studies , Humans , SARS-CoV-2
11.
J Fungi (Basel) ; 7(8)2021 Jul 24.
Article in English | MEDLINE | ID: covidwho-1376861

ABSTRACT

In order to successfully infect or colonize human hosts or survive changing environments, Aspergillus fumigatus needs to adapt through genetic changes or phenotypic plasticity. The genomic changes are based on the capacity of the fungus to produce genetic variation, followed by selection of the genotypes that are most fit to the new environment. Much scientific work has focused on the metabolic plasticity, biofilm formation or the particular genetic changes themselves leading to adaptation, such as antifungal resistance in the host. Recent scientific work has shown advances made in understanding the natural relevance of parasex and how both the asexual and sexual reproduction can lead to tandem repeat elongation in the target gene of the azoles: the cyp51A gene. In this review, we will explain how the fungus can generate genetic variation that can lead to adaptation. We will discuss recent advances that have been made in the understanding of the lifecycle of A. fumigatus to explain the differences observed in speed and type of mutations that are generated under different environments and how this can facilitate adaptation, such as azole-resistance selection.

13.
Intensive Care Med ; 47(8): 819-834, 2021 08.
Article in English | MEDLINE | ID: covidwho-1279405

ABSTRACT

PURPOSE: Invasive pulmonary aspergillosis (IPA) is increasingly reported in patients with severe coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Diagnosis and management of COVID-19 associated pulmonary aspergillosis (CAPA) are challenging and our aim was to develop practical guidance. METHODS: A group of 28 international experts reviewed current insights in the epidemiology, diagnosis and management of CAPA and developed recommendations using GRADE methodology. RESULTS: The prevalence of CAPA varied between 0 and 33%, which may be partly due to variable case definitions, but likely represents true variation. Bronchoscopy and bronchoalveolar lavage (BAL) remain the cornerstone of CAPA diagnosis, allowing for diagnosis of invasive Aspergillus tracheobronchitis and collection of the best validated specimen for Aspergillus diagnostics. Most patients diagnosed with CAPA lack traditional host factors, but pre-existing structural lung disease and immunomodulating therapy may predispose to CAPA risk. Computed tomography seems to be of limited value to rule CAPA in or out, and serum biomarkers are negative in 85% of patients. As the mortality of CAPA is around 50%, antifungal therapy is recommended for BAL positive patients, but the decision to treat depends on the patients' clinical condition and the institutional incidence of CAPA. We recommend against routinely stopping concomitant corticosteroid or IL-6 blocking therapy in CAPA patients. CONCLUSION: CAPA is a complex disease involving a continuum of respiratory colonization, tissue invasion and angioinvasive disease. Knowledge gaps including true epidemiology, optimal diagnostic work-up, management strategies and role of host-directed therapy require further study.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/epidemiology , SARS-CoV-2
14.
Euro Surveill ; 26(23)2021 06.
Article in English | MEDLINE | ID: covidwho-1266639

ABSTRACT

We describe four secondary fungal infections caused by Mucorales species in COVID-19 patients. Three COVID-19 associated mucormycosis (CAM) occurred in ICU, one outside ICU. All were men aged > 50 years, three died. Clinical presentations included pulmonary, rhino-orbital cerebral and disseminated infection. Infections occurred in patients with and without diabetes mellitus. CAM is an emerging disease and our observations underscore the need to be aware of invasive mucormycosis, including in COVID-19 patients without (poorly controlled) diabetes mellitus and outside ICU.


Subject(s)
COVID-19 , Mucorales , Mucormycosis , Female , Humans , Male , Mucormycosis/diagnosis , Netherlands/epidemiology , SARS-CoV-2
15.
Curr Opin Microbiol ; 62: 21-27, 2021 08.
Article in English | MEDLINE | ID: covidwho-1240510

ABSTRACT

The occurrence of invasive pulmonary aspergillosis (IPA) in critically ill patients with viral pneumonitis has increasingly been reported in recent years. Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are the two most common forms of this fungal infection. These diseases cause high mortality in patients, most of whom were previously immunocompetent. The pathogenesis of IAPA and CAPA is still not fully understood, but involves viral, fungal and host factors. In this article, we discuss several aspects regarding IAPA and CAPA, including their possible pathogenesis, the use of immunotherapy, and future challenges.


Subject(s)
COVID-19/complications , Influenza, Human/complications , Invasive Pulmonary Aspergillosis/etiology , Pneumonia, Viral/complications , COVID-19/immunology , Critical Illness , Humans , Immunotherapy , Influenza, Human/immunology , Invasive Pulmonary Aspergillosis/immunology , Invasive Pulmonary Aspergillosis/pathology , Invasive Pulmonary Aspergillosis/therapy , Pneumonia, Viral/immunology
16.
Mycoses ; 64(8): 809-816, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1083745

ABSTRACT

Severe COVID-19 patients complicated with aspergillosis are increasingly reported. We present a histopathological proven case of fatal COVID-19-associated pulmonary aspergillosis (CAPA), due to Aspergillus flavus. This report and existing published literature indicate diagnostic challenges and poor outcomes of CAPA in ICU patients.


Subject(s)
Aspergillus flavus/pathogenicity , COVID-19/complications , Pulmonary Aspergillosis/etiology , SARS-CoV-2 , Aged , Aspergillus flavus/isolation & purification , Humans , Male , Pulmonary Aspergillosis/diagnostic imaging , Pulmonary Aspergillosis/microbiology , Radiography, Thoracic , Tomography, X-Ray Computed
18.
J Fungi (Basel) ; 6(4)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-1024594

ABSTRACT

The disease caused by the new SARS-CoV-2, known as Coronavirus disease 2019 (COVID-19), was first identified in China in December 2019 and rapidly spread around the world. Coinfections with fungal pathogens in patients with COVID-19 add challenges to patient care. We conducted a literature review on fungal coinfections in patients with COVID-19. We describe a report of a patient with disseminated histoplasmosis who was likely infected with SARS-CoV-2 and experienced COVID-19 during hospital care in Buenos Aires, Argentina. This patient presented with advanced HIV disease, a well-known factor for disseminated histoplasmosis; on the other hand, we suspected that COVID-19 was acquired during hospitalization but there is not enough evidence to support this hypothesis. Clinical correlation and the use of specific Histoplasma and COVID-19 rapid diagnostics assays were key to the timely diagnosis of both infections, permitting appropriate treatment and patient care.

19.
Lancet Infect Dis ; 21(6): e149-e162, 2021 06.
Article in English | MEDLINE | ID: covidwho-974782

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 causes direct damage to the airway epithelium, enabling aspergillus invasion. Reports of COVID-19-associated pulmonary aspergillosis have raised concerns about it worsening the disease course of COVID-19 and increasing mortality. Additionally, the first cases of COVID-19-associated pulmonary aspergillosis caused by azole-resistant aspergillus have been reported. This article constitutes a consensus statement on defining and managing COVID-19-associated pulmonary aspergillosis, prepared by experts and endorsed by medical mycology societies. COVID-19-associated pulmonary aspergillosis is proposed to be defined as possible, probable, or proven on the basis of sample validity and thus diagnostic certainty. Recommended first-line therapy is either voriconazole or isavuconazole. If azole resistance is a concern, then liposomal amphotericin B is the drug of choice. Our aim is to provide definitions for clinical research and up-to-date recommendations for clinical management of the diagnosis and treatment of COVID-19-associated pulmonary aspergillosis.


Subject(s)
Antifungal Agents/therapeutic use , COVID-19/complications , Coinfection/drug therapy , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/drug therapy , Amphotericin B , Azoles/pharmacology , Humans , Nitriles , Pyridines , SARS-CoV-2 , Triazoles , Voriconazole/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL