Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Cell Infect Microbiol ; 12: 790851, 2022.
Article in English | MEDLINE | ID: covidwho-1775643

ABSTRACT

Animal models are essential to understanding COVID-19 pathophysiology and for preclinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap, and transparent zebrafish larva as a potential host for SARS-CoV-2. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, or bloodstream, resulted in a rapid decrease of SARS-CoV-2 RNA in wild-type larvae. However, when the virus was inoculated in the swim bladder, viral RNA stabilized after 24 h. By immunohistochemistry, epithelial cells containing SARS-CoV-2 nucleoprotein were observed in the swim bladder wall. Our data suggest an abortive infection of the swim bladder. In some animals, several variants of concern were also tested with no evidence of increased infectivity in our model. Low infectivity of SARS-CoV-2 in zebrafish larvae was not due to the host type I interferon response, as comparable viral loads were detected in type I interferon-deficient animals. A mosaic overexpression of human ACE2 was not sufficient to increase SARS-CoV-2 infectivity in zebrafish embryos or in fish cells in vitro. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with the mammalian lung.


Subject(s)
COVID-19 , Zebrafish , Animals , Larva , Mammals , RNA, Viral , SARS-CoV-2 , Urinary Bladder
2.
J Virol ; 96(2): e0106021, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1759286

ABSTRACT

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Subject(s)
Capsid/chemistry , Mutation/drug effects , Rhinovirus/physiology , Virus Uncoating/physiology , Antiviral Agents/pharmacology , Capsid/drug effects , Capsid Proteins/genetics , Capsid Proteins/metabolism , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Endosomes/chemistry , Endosomes/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intercellular Adhesion Molecule-1/metabolism , Protein Conformation , Rhinovirus/chemistry , Rhinovirus/drug effects , Rhinovirus/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Virus Internalization/drug effects , Virus Uncoating/drug effects , Virus Uncoating/genetics
3.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1625709

ABSTRACT

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Epithelial Cells/virology , SARS-CoV-2/metabolism , Transcription Factors/drug effects , Angiotensin-Converting Enzyme 2/drug effects , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/virology , Cell Line , Epithelial Cells/metabolism , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Transcription Factors/metabolism
4.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1575628

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Subject(s)
COVID-19 , MicroRNAs , RNA, Viral/genetics , SARS-CoV-2/genetics , 3' Untranslated Regions , COVID-19/immunology , Humans , Immunity , MicroRNAs/genetics
5.
Mol Cell ; 81(21): 4467-4480.e7, 2021 11 04.
Article in English | MEDLINE | ID: covidwho-1473419

ABSTRACT

Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.


Subject(s)
Pyrazines/chemistry , RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Recombination, Genetic , Ribonucleotides/chemistry , Animals , Antiviral Agents , Catalysis , Cells, Cultured , Genetic Techniques , Genome , Genome, Viral , Homologous Recombination , Humans , Kinetics , Mice , Mice, Transgenic , Molecular Dynamics Simulation , Mutagenesis , Nucleotides/genetics , Protein Conformation , RNA/chemistry , RNA-Dependent RNA Polymerase/metabolism , RNA-Seq , Transgenes , Virulence
6.
Nat Commun ; 12(1): 5553, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1434104

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/drug therapy , Cell Line , Dipeptides/pharmacology , Humans , Mutation , Myosin-Light-Chain Kinase/antagonists & inhibitors , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Proteolysis , Proteomics , RNA, Small Interfering/pharmacology , SARS-CoV-2/genetics , Viral Proteases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/metabolism
7.
J Theor Biol ; 531: 110895, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1401660

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV -2), a causative agent of COVID-19 disease, poses a significant threat to public health. Since its outbreak in December 2019, Wuhan, China, extensive collection of diverse data from cell culture and animal infections as well as population level data from an ongoing pandemic, has been vital in assessing strategies to battle its spread. Mathematical modelling plays a key role in quantifying determinants that drive virus infection dynamics, especially those relevant for epidemiological investigations and predictions as well as for proposing efficient mitigation strategies. We utilized a simple mathematical model to describe and explain experimental results on viral replication cycle kinetics during SARS-CoV-2 infection of animal and human derived cell lines, green monkey kidney cells, Vero-E6, and human lung epithelium cells, A549-ACE2, respectively. We conducted cell infections using two distinct initial viral concentrations and quantified viral loads over time. We then fitted the model to our experimental data and quantified the viral parameters. We showed that such cellular tropism generates significant differences in the infection rates and incubation times of SARS-CoV-2, that is, the times to the first release of newly synthesised viral progeny by SARS-CoV-2-infected cells. Specifically, the rate at which A549-ACE2 cells were infected by SARS-CoV-2 was 15 times lower than that in the case of Vero-E6 cell infection and the duration of latent phase of A549-ACE2 cells was 1.6 times longer than that of Vero-E6 cells. On the other hand, we found no statistically significant differences in other viral parameters, such as viral production rate or infected cell death rate. Since in vitro infection assays represent the first stage in the development of antiviral treatments against SARS-CoV-2, discrepancies in the viral parameter values across different cell hosts have to be identified and quantified to better target vaccine and antiviral research.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , Models, Theoretical , Pandemics , Virion
8.
Science ; 373(6554): 541-547, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1334531

ABSTRACT

Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning , Lipidoses/chemically induced , Phospholipids/metabolism , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , COVID-19/virology , Cations , Chlorocebus aethiops , Dose-Response Relationship, Drug , Female , Humans , Mice , Microbial Sensitivity Tests , SARS-CoV-2/physiology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/toxicity , Vero Cells , Virus Replication/drug effects
9.
Science ; 373(6557): 931-936, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1319369

ABSTRACT

There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus OC43, Human/drug effects , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Thiazoles/pharmacology , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Benzamides , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus OC43, Human/physiology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mice , Mice, Transgenic , Microbial Sensitivity Tests , Piperidines , Pyridines , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/therapeutic use , Viral Load/drug effects , Virus Replication/drug effects
10.
FEBS J ; 288(17): 5148-5162, 2021 09.
Article in English | MEDLINE | ID: covidwho-1189682

ABSTRACT

Small linear motifs targeting protein interacting domains called PSD-95/Dlg/ZO-1 (PDZ) have been identified at the C terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins E, 3a, and N. Using a high-throughput approach of affinity-profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS-CoV-2 proteins E, 3A, and N showing significant interactions with dissociation constants values ranging from 3 to 82 µm. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS-CoV while three (NHERF1, MAST2, RADIL) are specific to SARS-CoV-2 E protein. Most of these SARS-CoV-2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Among the binders of the SARS-CoV-2 proteins E, 3a, or N, seven significantly affect viral replication under knock down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS-CoV-2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti-coronaviral agents for therapeutic purposes.


Subject(s)
COVID-19/genetics , Host-Pathogen Interactions/genetics , PDZ Domains/genetics , SARS-CoV-2/genetics , COVID-19/virology , Carrier Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Humans , Myosins/genetics , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , SARS-CoV-2/pathogenicity , Viral Envelope Proteins/genetics , Viroporin Proteins/genetics , Virus Internalization , Virus Replication/genetics , Zonula Occludens-1 Protein/genetics
11.
Science ; 371(6532): 926-931, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1048642

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration = 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited toxicity in cell culture. Through the use of a drug-resistant mutant, we show that the antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2 infection with a reduction of viral replication in the lungs by two orders of magnitude using prophylactic treatment. Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Depsipeptides/pharmacology , Peptide Elongation Factor 1/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/prevention & control , COVID-19/virology , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/genetics , Depsipeptides/administration & dosage , Depsipeptides/therapeutic use , Drug Evaluation, Preclinical , Female , HEK293 Cells , Humans , Lung/virology , Mice, Inbred C57BL , Mutation , Peptides, Cyclic , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL