ABSTRACT
Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.
Subject(s)
COVID-19 , Interferon-gamma , Interleukin-2 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Epitopes , Immunoglobulin G , Interferon-gamma/immunology , Interleukin-2/immunology , Leukocytes, Mononuclear , Proteome , SARS-CoV-2 , VaccinationABSTRACT
SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and membrane (M) proteins and others. This prospective COVID-19 Health Action Response for Marines (CHARM) study enabled assessment of T cell responses against S, N and M proteins in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all participants were negative by qPCR; follow-up occurred biweekly and bimonthly for the next 6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were enrolled in an immune response sub-study. FluoroSpot interferon-gamma (IFN-γ) and IL2 responses following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28 days later were measured using pools of 17mer peptides covering S, N, and M proteins, or CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens. Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection generated IFN-γ responses to the S, N and M proteins that persisted longer in asymptomatic cases. IFN-γ responses were significantly (p = 0.001) more frequent to the N pool (51.4%) than the M pool (18.9%) among asymptomatic but not symptomatic subjects. Asymptomatic IFN-γ responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%) and N pool (57.1%), than the M pool (7.1%), but not symptomatic participants. The frequencies of IFN-γ responses to the S and N+M pools peaked 7 days after the positive qPCR test among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%; N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-γ and IL2 responses to the N+M pool were significantly correlated with IFN-γ and IL2 responses to the N and M pools. These data further support the central role of Th1-biased cell mediated immunity IFN-γ and IL2 responses, particularly to the N protein, in controlling COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S proteins.
Subject(s)
COVID-19 , Interferon-gamma , Interleukin-2 , Antibodies, Viral , Asymptomatic Infections , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines , Epitopes , Humans , Interferon-gamma/immunology , Interleukin-2/immunology , Military Personnel , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
BACKGROUND: Non-human primates (NHPs) play an important role in biomedical research, where they are often being re-used in multiple research studies over the course of their life-time. Researchers employ various study-specific screening criteria to reduce potential variables associated with subsequent re-use of NHPs. However, criteria set for NHP re-assignments largely neglect the impact of previous exposures on overall biology. Since the immune system is a key determinant of overall biological outcome, an altered biological state could be predicted by monitoring global changes in the immune profile. We postulate that every different exposure or a condition can generate a unique global immune profile in NHPs. METHODS: Changes in the global immune profile were evaluated in three different groups of rhesus macaques previously enrolled in dengue or malaria vaccine studies over six months after their last exposure. Naïve animals served as the baseline. Fresh blood samples were stained with various immune cell surface markers and analyzed by multi-color flow-cytometry to study immune cell dynamics in the peripheral blood. Serum cytokine profile in the pre-exposed animals were analyzed by mesoscale assay using a customized U-PLEX NHP biomarker panel of 12 cytokines/chemokines. RESULTS: Pre-exposed macaques showed altered dynamics in circulating cytokines and certain innate and adaptive immune cell subsets such as monocytes, HLA-DR+NKT cells, B cells and T cells. Some of these changes were transient, while some lasted for more than six months. Each group seemed to develop a global immune profile unique to their particular exposure. CONCLUSION: Our data strongly suggest that re-used NHPs should be evaluated for long-term, overall immunological changes and randomly assigned to new studies to avoid study bias.