Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: covidwho-2006228

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the disparity between developed and developing countries for infectious disease surveillance and the sequencing of pathogen genomes. The majority of SARS-CoV-2 sequences published are from Europe, North America, and Asia. Between April 2020 and January 2022, 795 SARS-CoV-2-positive nares swabs from individuals in the U.S. Navy installation Camp Lemonnier, Djibouti, were collected, sequenced, and analyzed. In this study, we described the results of genomic sequencing and analysis for 589 samples, the first published viral sequences for Djibouti, including 196 cases of vaccine breakthrough infections. This study contributes to the knowledge base of circulating SARS-CoV-2 lineages in the under-sampled country of Djibouti, where only 716 total genome sequences are available at time of publication. Our analysis resulted in the detection of circulating variants of concern, mutations of interest in lineages in which those mutations are not common, and emerging spike mutations.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Djibouti/epidemiology , Genome, Viral , Humans , Mutation , SARS-CoV-2/genetics
2.
Front Microbiol ; 13: 960932, 2022.
Article in English | MEDLINE | ID: covidwho-2005889

ABSTRACT

Early in the pandemic, in March of 2020, an outbreak of COVID-19 occurred aboard the aircraft carrier USS Theodore Roosevelt (CVN-71), during deployment in the Western Pacific. Out of the crew of 4,779 personnel, 1,331 service members were suspected or confirmed to be infected with SARS-CoV-2. The demographic, epidemiologic, and laboratory findings of service members from subsequent investigations have characterized the outbreak as widespread transmission of virus with relatively mild symptoms and asymptomatic infection among mostly young healthy adults. At the time, there was no available vaccination against COVID-19 and there was very limited knowledge regarding SARS-CoV-2 mutation, dispersal, and transmission patterns among service members in a shipboard environment. Since that time, other shipboard outbreaks from which data can be extracted have occurred, but these later shipboard outbreaks have occurred largely in settings where the majority of the crew were vaccinated, thereby limiting spread of the virus, shortening duration of the outbreaks, and minimizing evolution of the virus within those close quarters settings. On the other hand, since the outbreak on the CVN-71 occurred prior to widespread vaccination, it continued over the course of roughly two months, infecting more than 25% of the crew. In order to better understand genetic variability and potential transmission dynamics of COVID-19 in a shipboard environment of immunologically naïve, healthy individuals, we performed whole-genome sequencing and virus culture from eighteen COVID-19-positive swabs collected over the course of one week. Using the unique variants identified in those genomes, we detected seven discrete groups of individuals within the population aboard CVN-71 infected with viruses of distinct genomic signature. This is in stark contrast to a recent outbreak aboard another U.S. Navy ship with >98% vaccinated crew after a port visit in Reykjavik, Iceland, where the outbreak lasted only approximately 2 weeks and the virus was clonal. Taken together, these results demonstrate the utility of sequencing from complex clinical samples for molecular epidemiology and they also suggest that a high rate of vaccination among a population in close communities may greatly reduce spread, thereby restricting evolution of the virus.

3.
Epidemiology ; 33(6): 797-807, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1985142

ABSTRACT

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Subject(s)
COVID-19 , Disease Outbreaks , Military Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Male , Military Personnel/statistics & numerical data , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , United States/epidemiology
4.
Open Forum Infect Dis ; 9(3): ofac030, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1706326

ABSTRACT

BACKGROUND: The frequency of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unclear and may be influenced by how symptoms are evaluated. In this study, we sought to determine the frequency of asymptomatic SARS-CoV-2 infections in a prospective cohort of health care workers (HCWs). METHODS: A prospective cohort of HCWs, confirmed negative for SARS-CoV-2 exposure upon enrollment, were evaluated for SARS-CoV-2 infection by monthly analysis of SARS-CoV-2 antibodies as well as referral for polymerase chain reaction testing whenever they exhibited symptoms of coronavirus disease 2019 (COVID-19). Participants completed the standardized and validated FLU-PRO Plus symptom questionnaire scoring viral respiratory disease symptom intensity and frequency at least twice monthly during baseline periods of health and each day they had any symptoms that were different from their baseline. RESULTS: Two hundred sixty-three participants were enrolled between August 25 and December 31, 2020. Through February 28, 2021, 12 participants were diagnosed with SARS-CoV-2 infection. Symptom analysis demonstrated that all 12 had at least mild symptoms of COVID-19, compared with baseline health, near or at time of infection. CONCLUSIONS: These results suggest that asymptomatic SARS-CoV-2 infection in unvaccinated, immunocompetent adults is less common than previously reported. While infectious inoculum doses and patient factors may have played a role in the clinical manifestations of SARS-CoV-2 infections in this cohort, we suspect that the high rate of symptomatic disease was due primarily to participant attentiveness to symptoms and collection of symptoms in a standardized, prospective fashion. These results have implications for studies that estimate SARS-CoV-2 infection prevalence and for public health measures to control the spread of this virus.

6.
Front Med (Lausanne) ; 8: 836658, 2021.
Article in English | MEDLINE | ID: covidwho-1686498

ABSTRACT

The emergence of SARS-CoV-2 variants complicates efforts to control the COVID-19 pandemic. Increasing genomic surveillance of SARS-CoV-2 is imperative for early detection of emerging variants, to trace the movement of variants, and to monitor effectiveness of countermeasures. Additionally, determining the amount of viable virus present in clinical samples is helpful to better understand the impact these variants have on viral shedding. In this study, we analyzed nasal swab samples collected between March 2020 and early November 2021 from a cohort of United States (U.S.) military personnel and healthcare system beneficiaries stationed worldwide as a part of the Defense Health Agency's (DHA) Global Emerging Infections Surveillance (GEIS) program. SARS-CoV-2 quantitative real time reverse-transcription PCR (qRT-PCR) positive samples were characterized by next-generation sequencing and a subset was analyzed for isolation and quantification of viable virus. Not surprisingly, we found that the Delta variant is the predominant strain circulating among U.S. military personnel beginning in July 2021 and primarily represents cases of vaccine breakthrough infections (VBIs). Among VBIs, we found a 50-fold increase in viable virus in nasal swab samples from Delta variant cases when compared to cases involving other variants. Notably, we found a 40-fold increase in viable virus in nasal swab samples from VBIs involving Delta as compared to unvaccinated personnel infected with other variants prior to the availability of approved vaccines. This study provides important insight about the genomic and virological characterization of SARS-CoV-2 isolates from a unique study population with a global presence.

7.
Pathogens ; 10(12)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554894

ABSTRACT

We used epidemiologic and viral genetic information to identify a case of likely reinfection in an otherwise healthy, young Marine recruit enrolled in the prospective, longitudinal COVID-19 Health Action Response for Marines (CHARM) study, and we paired these findings with serological studies. This participant had a positive RT-PCR to SARS-CoV-2 upon routine sampling on study day 7, although he was asymptomatic at that time. He cleared the infection within seven days. On study day 46, he had developed symptoms consistent with COVID-19 and tested positive by RT-PCR for SARS-CoV-2 again. Viral whole genome sequencing was conducted from nares swabs at multiple time points. The day 7 sample was determined to be lineage B.1.340, whereas both the day 46 and day 49 samples were B.1.1. The first positive result for anti-SARS-CoV-2 IgM serology was collected on day 49 and for IgG on day 91. This case appears most consistent with a reinfection event. Our investigation into this case is unique in that we compared sequence data from more than just paired specimens, and we also assayed for immune response after both the initial infection and the later reinfection. These data demonstrate that individuals who have experienced an infection with SARS-CoV-2 may fail to generate effective or long-lasting immunity, similar to endemic human beta coronaviruses.

SELECTION OF CITATIONS
SEARCH DETAIL