Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Microbiol Spectr ; 11(3): e0431122, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2317294

ABSTRACT

Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms.


Subject(s)
Anti-HIV Agents , COVID-19 , Adult , Humans , SARS-CoV-2 , Nelfinavir/adverse effects , Time Factors , Treatment Outcome
2.
Influenza Other Respir Viruses ; 17(2): e13094, 2023 02.
Article in English | MEDLINE | ID: covidwho-2238741

ABSTRACT

Background: Based on routine surveillance data, Japan has been affected much less by COVID-19 compared with other countries. To validate this, we aimed to estimate SARS-CoV-2 seroprevalence and examine sociodemographic factors associated with cumulative infection in Japan. Methods: A population-based serial cross-sectional seroepidemiological investigation was conducted in five prefectures in December 2021 (pre-Omicron) and February-March 2022 (Omicron [BA.1/BA.2]-peak). Anti-nucleocapsid and anti-spike antibodies were measured to detect infection-induced and vaccine/infection-induced antibodies, respectively. Logistic regression was used to identify associations between various factors and past infection. Results: Among 16 296 participants (median age: 53 [43-64] years), overall prevalence of infection-induced antibodies was 2.2% (95% CI: 1.9-2.5%) in December 2021 and 3.5% (95% CI: 3.1-3.9%) in February-March 2022. Factors associated with past infection included those residing in urban prefectures (Tokyo: aOR 3.37 [95% CI: 2.31-4.91], Osaka: aOR 3.23 [95% CI: 2.17-4.80]), older age groups (60s: aOR 0.47 [95% CI 0.29-0.74], 70s: aOR 0.41 [95% CI 0.24-0.70]), being vaccinated (twice: aOR 0.41 [95% CI: 0.28-0.61], three times: aOR 0.21 [95% CI: 0.12-0.36]), individuals engaged in occupations such as long-term care workers (aOR: 3.13 [95% CI: 1.47-6.66]), childcare workers (aOR: 3.63 [95% CI: 1.60-8.24]), food service workers (aOR: 3.09 [95% CI: 1.50-6.35]), and history of household contact (aOR: 26.4 [95% CI: 20.0-34.8]) or non-household contact (aOR: 5.21 [95% CI:3.80-7.14]) in February-March 2022. Almost all vaccinated individuals (15 670/15 681) acquired binding antibodies with higher titers among booster dose recipients. Conclusions: Before Omicron, the cumulative burden was >10 times lower in Japan (2.2%) compared with the US (33%), the UK (25%), or global estimates (45%), but most developed antibodies owing to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , Middle Aged , COVID-19/epidemiology , COVID-19/prevention & control , Japan/epidemiology , Cross-Sectional Studies , Seroepidemiologic Studies , SARS-CoV-2 , Antibodies, Viral
3.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2246501

ABSTRACT

Peracetic acid (PAA) disinfectants are effective against a wide range of pathogenic microorganisms, including bacteria, fungi, and viruses. Several studies have shown the efficacy of PAA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, its efficacy in SARS-CoV-2 variants and the molecular mechanism of action of PAA against SARS-CoV-2 have not been investigated. SARS-CoV-2 infection depends on the recognition and binding of the cell receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the spike protein. Here, we demonstrated that PAA effectively suppressed pseudotyped virus infection in the Wuhan type and variants, including Delta and Omicron. Similarly, PAA reduced the authentic viral load of SARS-CoV-2. Computational analysis suggested that the hydroxyl radicals produced by PAA cleave the disulfide bridges in the RBD. Additionally, the PAA treatment decreased the abundance of the Wuhan- and variant-type spike proteins. Enzyme-linked immunosorbent assay showed direct inhibition of RBD-ACE2 interactions by PAA. In conclusion, the PAA treatment suppressed SARS-CoV-2 infection, which was dependent on the inhibition of the interaction between the spike RBD and ACE2 by inducing spike protein destabilization. Our findings provide evidence of a potent disinfection strategy against SARS-CoV-2.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Peracetic Acid/pharmacology , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Protein Binding
4.
Influenza and other respiratory viruses ; 17(2), 2023.
Article in English | EuropePMC | ID: covidwho-2227626

ABSTRACT

Background Based on routine surveillance data, Japan has been affected much less by COVID‐19 compared with other countries. To validate this, we aimed to estimate SARS‐CoV‐2 seroprevalence and examine sociodemographic factors associated with cumulative infection in Japan. Methods A population‐based serial cross‐sectional seroepidemiological investigation was conducted in five prefectures in December 2021 (pre‐Omicron) and February–March 2022 (Omicron [BA.1/BA.2]‐peak). Anti‐nucleocapsid and anti‐spike antibodies were measured to detect infection‐induced and vaccine/infection‐induced antibodies, respectively. Logistic regression was used to identify associations between various factors and past infection. Results Among 16 296 participants (median age: 53 [43–64] years), overall prevalence of infection‐induced antibodies was 2.2% (95% CI: 1.9–2.5%) in December 2021 and 3.5% (95% CI: 3.1–3.9%) in February–March 2022. Factors associated with past infection included those residing in urban prefectures (Tokyo: aOR 3.37 [95% CI: 2.31–4.91], Osaka: aOR 3.23 [95% CI: 2.17–4.80]), older age groups (60s: aOR 0.47 [95% CI 0.29–0.74], 70s: aOR 0.41 [95% CI 0.24–0.70]), being vaccinated (twice: aOR 0.41 [95% CI: 0.28–0.61], three times: aOR 0.21 [95% CI: 0.12–0.36]), individuals engaged in occupations such as long‐term care workers (aOR: 3.13 [95% CI: 1.47–6.66]), childcare workers (aOR: 3.63 [95% CI: 1.60–8.24]), food service workers (aOR: 3.09 [95% CI: 1.50–6.35]), and history of household contact (aOR: 26.4 [95% CI: 20.0–34.8]) or non‐household contact (aOR: 5.21 [95% CI:3.80–7.14]) in February–March 2022. Almost all vaccinated individuals (15 670/15 681) acquired binding antibodies with higher titers among booster dose recipients. Conclusions Before Omicron, the cumulative burden was >10 times lower in Japan (2.2%) compared with the US (33%), the UK (25%), or global estimates (45%), but most developed antibodies owing to vaccination.

5.
Commun Biol ; 5(1): 694, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1947509

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that causes various diseases in humans, ranging from common mucocutaneous lesions to severe life-threatening encephalitis. However, our understanding of the interaction between HSV-1 and human host factors remains incomplete. Here, to identify the host factors for HSV-1 infection, we performed a human genome-wide CRISPR screen using near-haploid HAP1 cells, in which gene knockout (KO) could be efficiently achieved. Along with several already known host factors, we identified 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) as a host factor for HSV-1 infection. The KO of PAPSS1 in HAP1 cells reduced heparan sulfate (HepS) expression, consequently diminishing the binding of HSV-1 and several other HepS-dependent viruses (such as HSV-2, hepatitis B virus, and a human seasonal coronavirus). Hence, our findings provide further insights into the host factor requirements for HSV-1 infection and HepS biosynthesis.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockout Techniques , Heparitin Sulfate/metabolism , Herpes Simplex/genetics , Herpesvirus 1, Human/genetics , Humans
6.
Biochem Biophys Res Commun ; 597: 30-36, 2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1654097

ABSTRACT

Viral spike proteins play important roles in the viral entry process, facilitating attachment to cellular receptors and fusion of the viral envelope with the cell membrane. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor angiotensin converting enzyme-2 (ACE2) via its receptor-binding domain (RBD). The cysteine residue at position 488, consisting of a disulfide bridge with cysteine 480 is located in an important structural loop at ACE2-binding surface of RBD, and is highly conserved among SARS-related coronaviruses. We showed that the substitution of Cys-488 with alanine impaired pseudotyped SARS-CoV-2 infection, syncytium formation, and cell-cell fusion triggered by SARS-CoV-2 spike expression. Consistently, in vitro binding of RBD and ACE2, spike-mediated cell-cell fusion, and pseudotyped viral infection of VeroE6/TMPRSS2 cells were inhibited by the thiol-reactive compounds N-acetylcysteine (NAC) and a reduced form of glutathione (GSH). Furthermore, we demonstrated that the activity of variant spikes from the SARS-CoV-2 alpha and delta strains were also suppressed by NAC and GSH. Taken together, these data indicate that Cys-488 in spike RBD is required for SARS-CoV-2 spike functions and infectivity, and could be a target of anti-SARS-CoV-2 therapeutics.

7.
Nihon Naika Gakkai Zasshi ; 109(11):2343-2347, 2020.
Article in Japanese | J-STAGE | ID: covidwho-1508500
8.
Emerg Infect Dis ; 27(10): 1-9, 2021 10.
Article in English | MEDLINE | ID: covidwho-1486730

ABSTRACT

To deal with the risk of emerging diseases with many unknowns, close and timely collaboration and communication between science experts and policymakers are crucial to developing and implementing an effective science-based intervention strategy. The Expert Meeting, an ad hoc medical advisory body, was established in February 2020 to advise Japan's COVID-19 Response Headquarters. The group played an important role in the policymaking process, promoting timely situation awareness and developing science-based proposals on interventions that were promptly reflected in government actions. However, this expert group may have been overly proactive in taking on the government's role in crisis management. For the next stage of managing the coronavirus disease pandemic and future pandemics, the respective roles of the government and its advisory bodies need to be clearly defined. Leadership and strategic risk communication by the government are key.


Subject(s)
COVID-19 , Government , Humans , Japan/epidemiology , Pandemics , SARS-CoV-2
9.
China CDC Wkly ; 2(45): 884-886, 2020 Nov 06.
Article in English | MEDLINE | ID: covidwho-1337928
10.
Elife ; 102021 07 27.
Article in English | MEDLINE | ID: covidwho-1328262

ABSTRACT

Since the start of the COVID-19 pandemic, two mainstream guidelines for defining when to end the isolation of SARS-CoV-2-infected individuals have been in use: the one-size-fits-all approach (i.e. patients are isolated for a fixed number of days) and the personalized approach (i.e. based on repeated testing of isolated patients). We use a mathematical framework to model within-host viral dynamics and test different criteria for ending isolation. By considering a fixed time of 10 days since symptom onset as the criterion for ending isolation, we estimated that the risk of releasing an individual who is still infectious is low (0-6.6%). However, this policy entails lengthy unnecessary isolations (4.8-8.3 days). In contrast, by using a personalized strategy, similar low risks can be reached with shorter prolonged isolations. The obtained findings provide a scientific rationale for policies on ending the isolation of SARS-CoV-2-infected individuals.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Patient Isolation , Practice Guidelines as Topic , Quarantine , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/transmission , Humans , Models, Theoretical , Molecular Diagnostic Techniques , Pandemics , Patient Isolation/methods , Patient Isolation/standards , Precision Medicine/methods , Quarantine/methods , Quarantine/standards , SARS-CoV-2/physiology , Viral Load
11.
PLoS Med ; 18(7): e1003660, 2021 07.
Article in English | MEDLINE | ID: covidwho-1298077

ABSTRACT

BACKGROUND: Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. METHODS AND FINDINGS: A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d-1 (95% CI: 1.06 to 1.27 d-1), 0.777 d-1 (0.716 to 0.838 d-1), and 0.450 d-1 (0.378 to 0.522 d-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An antiviral effect causing a 95% to 99% reduction in viral replication was added to the model. To be realistic, we assumed that randomization and treatment are initiated with some time lag after symptom onset. Using the duration of virus shedding as an outcome, the sample size to detect a statistically significant mean difference between the treatment and placebo groups (1:1 allocation) was 13,603 and 11,670 (when the antiviral effect was 95% and 99%, respectively) per group if all patients are enrolled regardless of timing of randomization. The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%, respectively) if only patients who are treated within 1 day of symptom onset are enrolled. We confirmed the sample size was similarly reduced when using cumulative viral load in log scale as an outcome. We used a conventional virus dynamics model, which may not fully reflect the detailed mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms of both parameter settings and model structure, which would yield more reliable sample size calculation. CONCLUSIONS: In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Randomized Controlled Trials as Topic , Sample Size , Humans , Models, Biological , SARS-CoV-2 , Treatment Outcome , Viral Load , Virus Replication , Virus Shedding
12.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1293863

ABSTRACT

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , COVID-19/epidemiology , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2/genetics , Viral Load
14.
Front Microbiol ; 12: 651403, 2021.
Article in English | MEDLINE | ID: covidwho-1231355

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 µM, IC90 = 2.31 µM, and IC99 = 4.39 µM in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor.

15.
Trials ; 22(1): 309, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1207605

ABSTRACT

OBJECTIVES: The aim of this trial is to evaluate the antiviral efficacy, clinical efficacy, and safety of nelfinavir in patients with asymptomatic and mild COVID-19. TRIAL DESIGN: The study is designed as a multicenter, open-label, blinded outcome assessment, parallel group, investigator-initiated, exploratory, randomized (1:1 ratio) controlled clinical trial. PARTICIPANTS: Asymptomatic and mild COVID-19 patients will be enrolled in 10 university and teaching hospitals in Japan. The inclusion and exclusion criteria are as follows: Inclusion criteria: (1) Japanese male or female patients aged ≥ 20 years (2) SARS-CoV-2 detected from a respiratory tract specimen (e.g., nasopharyngeal swab or saliva) using PCR, LAMP, or an antigen test within 3 days before obtaining the informed consent (3) Provide informed consent Exclusion criteria: (1) Symptoms developed ≥ 8 days prior to enrolment (2) SpO2 < 96 % (room air) (3) Any of the following screening criteria: a) ALT or AST ≥ 5 × upper limit of the reference range b) Child-Pugh class B or C c) Serum creatinine ≥ 2 × upper limit of the reference range and creatinine clearance < 30 mL/min (4) Poorly controlled diabetes (random blood glucose ≥ 200 mg/dL or HbA1c ≥ 7.0%, despite treatment) (5) Unsuitable serious complications based on the assessment of either the principal investigator or the sub-investigator (6) Hemophiliac or patients with a marked hemorrhagic tendency (7) Severe diarrhea (8) Hypersensitivity to the investigational drug (9) Breastfeeding or pregnancy (10) With childbearing potential and rejecting contraceptive methods during the study period from the initial administration of the investigational drug (11) Receiving rifampicin within the previous 2 weeks (12) Participated in other clinical trials and received drugs within the previous 12 weeks (13) Undergoing treatment for HIV infection (14) History of SARS-CoV-2 vaccination or wishes to be vaccinated against SARS-CoV-2 (15) Deemed inappropriate (for miscellaneous reasons) based on the assessment of either the principal investigator or the sub-investigator INTERVENTION AND COMPARATOR: Patients who meet the inclusion criteria and do not meet any of the exclusion criteria will be randomized to either the nelfinavir group or the symptomatic treatment group. The nelfinavir group will be administered 750 mg of nelfinavir orally, three times daily for 14 days (treatment period). However, if a participant tests negative on two consecutive PCR tests of saliva samples, administration of the investigational drug for that participant can be discontinued at the discretion of the investigators. The symptomatic treatment group will not be administered the investigational drug, but all other study procedures and conditions will be the same for both groups for the duration of the treatment period. After the treatment period of 14 days, each group will be followed up for 14 days (observational period). MAIN OUTCOMES: The primary endpoint is the time to negative conversion of SARS-CoV-2. During the study period from Day 1 to Day 28, two consecutive negative PCR results of saliva samples will be considered as the negative conversion of the virus. The secondary efficacy endpoints are as follows: For patients with both asymptomatic and mild disease: area under the curve of viral load, half decay period of viral load, body temperature at each time point, all-cause mortality, incidence rate of pneumonia, percentage of patients with newly developed pneumonia, rate of oxygen administration, and the percentage of patients who require oxygen administration. For asymptomatic patients: incidence of symptomatic COVID-19, incidence of fever (≥ 37.0 °C for two consecutive days), incidence of cough For patients with mild disease: incidence of defervescence (< 37.0 °C), incidence of recovery from clinical symptoms, incidence of improvement of each symptom The secondary safety endpoints are adverse events and clinical examinations. RANDOMIZATION: Patients will be randomized to either the nelfinavir group or the symptomatic treatment group using the electric data capture system (1:1 ratio, dynamic allocation based on severity [asymptomatic], and age [< 60 years]). BLINDING (MASKING): Only the assessors of the primary outcome will be blinded (blinded outcome assessment). NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): The sample size was determined based on our power analysis to reject the null hypothesis, S (t | z =1) = S (t | z = 0) where S is a survival function, t is time to negative conversion, and z denotes randomization group, by the log-rank test with a two-sided p value of 0.05. We estimated viral dynamic parameters by fitting a nonlinear mixed-effects model to reported viral load data, and simulated our primary endpoint from viral-load time-courses that were realized from sets of viral dynamics parameters sampled from the estimated probability distribution of the parameters (sample size: 2000; 1000 each for randomization group). From this estimation of the hazard ratio between the randomization groups for the event of negative conversion using this simulation dataset, the required number of events for rejecting our null hypothesis with a power of 0.80 felled 97.345 by plugging the estimated hazard ratio, 1.79, in Freedman's equation. Therefore, we decided the required number of randomizations to be 120 after consideration of the frequency of censoring and the anticipated rate of withdrawal caused by factors such as withdrawal of consent. TRIAL STATUS: Protocol version 6.0 of February 12, 2021. Recruitment started on July 22, 2020 and is anticipated to be completed by March 31, 2022. TRIAL REGISTRATION: This trial was registered in Japan Registry of Clinical Trials (jRCT) ( jRCT2071200023 ) on 21 July 21, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
COVID-19 Drug Treatment , HIV Infections , COVID-19 Vaccines , Female , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Japan , Male , Middle Aged , Multicenter Studies as Topic , Nelfinavir/adverse effects , Pregnancy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
16.
J R Soc Interface ; 18(177): 20200947, 2021 04.
Article in English | MEDLINE | ID: covidwho-1194079

ABSTRACT

Viral tests including polymerase chain reaction (PCR) tests are recommended to diagnose COVID-19 infection during the acute phase of infection. A test should have high sensitivity; however, the sensitivity of the PCR test is highly influenced by viral load, which changes over time. Because it is difficult to collect data before the onset of symptoms, the current literature on the sensitivity of the PCR test before symptom onset is limited. In this study, we used a viral dynamics model to track the probability of failing to detect a case of PCR testing over time, including the presymptomatic period. The model was parametrized by using longitudinal viral load data collected from 30 hospitalized patients. The probability of failing to detect a case decreased toward symptom onset, and the lowest probability was observed 2 days after symptom onset and increased afterwards. The probability on the day of symptom onset was 1.0% (95% CI: 0.5 to 1.9) and that 2 days before symptom onset was 60.2% (95% CI: 57.1 to 63.2). Our study suggests that the diagnosis of COVID-19 by PCR testing should be done carefully, especially when the test is performed before or way after symptom onset. Further study is needed of patient groups with potentially different viral dynamics, such as asymptomatic cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Polymerase Chain Reaction , Probability , Serologic Tests
17.
iScience ; 24(4): 102367, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1157438

ABSTRACT

Antiviral treatments targeting the coronavirus disease 2019 are urgently required. We screened a panel of already approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new agents having higher antiviral potentials than the drug candidates such as remdesivir and chroloquine in VeroE6/TMPRSS2 cells: the anti-inflammatory drug cepharanthine and human immunodeficiency virus protease inhibitor nelfinavir. Cepharanthine inhibited SARS-CoV-2 entry through the blocking of viral binding to target cells, while nelfinavir suppressed viral replication partly by protease inhibition. Consistent with their different modes of action, synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation was highlighted. Mathematical modeling in vitro antiviral activity coupled with the calculated total drug concentrations in the lung predicts that nelfinavir will shorten the period until viral clearance by 4.9 days and the combining cepharanthine/nelfinavir enhanced their predicted efficacy. These results warrant further evaluation of the potential anti-SARS-CoV-2 activity of cepharanthine and nelfinavir.

18.
Emerg Infect Dis ; 27(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1145545

ABSTRACT

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with higher transmission potential have been emerging globally, including SARS-CoV-2 variants from the United Kingdom and South Africa. We report 4 travelers from Brazil to Japan in January 2021 infected with a novel SARS-CoV-2 variant with an additional set of mutations.


Subject(s)
COVID-19 Drug Treatment , Communicable Diseases, Imported , SARS-CoV-2 , Adult , Basic Reproduction Number , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/therapy , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/physiopathology , Communicable Diseases, Imported/therapy , Communicable Diseases, Imported/virology , Hospitalization , Humans , Japan/epidemiology , Male , Mutation , Quarantine/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Symptom Assessment/methods , Travel-Related Illness , Treatment Outcome
19.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: covidwho-1143519

ABSTRACT

The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 µM and 99% at 15 µM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 µM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Oxysterols/chemistry , Oxysterols/pharmacology , SARS-CoV-2/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Cell Survival/drug effects , Chlorocebus aethiops , Mice , Nucleocapsid Proteins/drug effects , Oxysterols/administration & dosage , Oxysterols/pharmacokinetics , SARS-CoV-2/genetics , Vero Cells , Viral Replication Compartments/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
20.
Emerg Infect Dis ; 27(2): 628-631, 2021 02.
Article in English | MEDLINE | ID: covidwho-1048937

ABSTRACT

We used 2 commercially available antibody tests to estimate seroprevalence of severe acute respiratory syndrome coronavirus 2 infection in Japan during June 2020. Of 7,950 samples, 8 were positive by both assays. Using 2 reliable antibody tests in conjunction is an effective method for estimating seroprevalence in low prevalence settings.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/statistics & numerical data , COVID-19/epidemiology , SARS-CoV-2/immunology , Adult , Aged , COVID-19/blood , COVID-19/immunology , Female , Humans , Japan , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL