Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Antimicrobial Agents & Chemotherapy ; : e0135322, 2022.
Article in English | MEDLINE | ID: covidwho-2161793

ABSTRACT

Adintrevimab is a human immunoglobulin G1 monoclonal antibody engineered to have broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other SARS-like coronaviruses with pandemic potential. In both Syrian golden hamster and rhesus macaque models, prophylactic administration of a single dose of adintrevimab provided protection against SARS-CoV-2/WA1/2020 infection in a dose-dependent manner, as measured by significant reductions in lung viral load and virus-induced lung pathology, and by inhibition of viral replication in the upper and lower respiratory tract.

2.
National Technical Information Service; 2021.
Non-conventional in English | National Technical Information Service | ID: grc-753724

ABSTRACT

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.

3.
Open Forum Infectious Diseases ; 8(SUPPL 1):S635, 2021.
Article in English | EMBASE | ID: covidwho-1746328

ABSTRACT

Background. ADG20 is a fully human IgG1 monoclonal antibody engineered to have potent and broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like CoVs with pandemic potential and an extended half-life. ADG20 is administered intramuscularly (IM). A QSP/PBPK model was constructed to support dose selection for a Phase 2/3 trial of ambulatory patients with mild to moderate COVID-19 (STAMP: NCT04805671). Methods. A QSP/PBPK model was used to simulate receptor occupancy (RO) and drug exposure in the upper airway (nasopharyngeal/oropharyngeal epithelial lining fluid [ELF] compartment). RO was linked to an existing viral dynamic model to enable the prediction of the natural time course of viral load and the effect of ADG20 on viral clearance and infectivity rate. RO was calculated using: 1) in vitro ADG20-SARS-CoV-2 binding kinetics (association rate constant (kon) of 1.52E+06 M-1•s1 and dissociation rate constant (koff) of 2.81E-04 s-1 from a Biacore assay;2) time course of ADG20 concentrations in ELF;and 3) time course of viral load following ADG20 administration. Molar SARS-CoV-2 viral binding site capacity was calculated assuming 40 spike proteins per virion, 3 binding sites per spike, and an initial viral load of log 107 copies/mL for all patients. The QSP/PBPK model and a 2018 CDC reference body weight distribution (45-150 kg) were used to simulate 1000 concentration-time profiles for a range of candidate ADG20 regimens. ADG20 regimens were evaluated against 2 criteria: 1) ability to attain near complete ( >90%), and durable (28-day) SARS-CoV-2 RO in the ELF;and 2) ability to maintain ELF ADG20 concentrations relative to a concentration (0.5 mg/L) associated with 100% viral growth suppression in an in vitro post-infection assay. Results. A single 300 mg IM ADG20 dose met the dose selection criteria in terms of RO (Figure A) and viral growth suppression (Figure B). Conclusion. These data support the evaluation of an ADG20 300 mg IM dose for the treatment of mild to moderate COVID-19. ADG20 is forecasted to attain near complete ( >90%) SARS-CoV-2 RO in the ELF and maintain ELF ADG20 concentrations above that associated with 100% viral growth suppression in vitro.

4.
Open Forum Infectious Diseases ; 8(SUPPL 1):S635-S636, 2021.
Article in English | EMBASE | ID: covidwho-1746327

ABSTRACT

Background. ADG20 is a fully human IgG1 monoclonal antibody engineered to have potent and broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like CoVs with pandemic potential as well as an extended-half-life. ADG20 is administered intramuscularly (IM). A QSP/PBPK model was constructed to support dose selection for a COVID-19 Phase 2/3 prevention trial (EVADE: NCT04859517). Methods. A QSP/PBPK model and a CDC reference adult body weight distribution (45-150 kg) were used to simulate 1000 concentration-time profiles for candidate single-dose regimens of ADG20 (150-450 mg IM). As serum virus neutralizing antibody (sVNA) titers are reportedly a key correlate of protection from COVID-19, a regression equation between time-matched serum ADG20 concentrations (following a 300 mg IM dose) and sVNA titers was developed using measured titers against authentic SARS-CoV-2 determined by a plaque reduction neutralization assay. Projected ADG20 serum concentrations relative to neutralization potency in vitro (90% inhibitory concentration [IC90]) for authentic SARSCoV-2 were also evaluated. Results. The measured 50% neutralization titer (MN50;geometric mean [coefficient of variation, %]) was 1382 (32.7%) 13 days after a single 300 mg IM dose of ADG20. This was within the range of peak sVNA titers reported for COVID-19 vaccine recipients. Using the linear equation relating serum ADG20 concentration to time matched individual MN50 titers and the QSP/PBPK median PK prediction, the anticipated median MN50 exceeded the threshold for protection from SARS-CoV-2 infection established in a non-human primate adoptive transfer model for up to 52 weeks. Based on the QSP/PBPK median PK prediction, median ADG20 serum concentrations are projected to remain >100-fold above the ADG20 IC90 value of 0.011 mg/L against authentic SARS-CoV-2 for up to 52 weeks (Figure). Conclusion. Following administration of a single 300 mg IM dose, sVNA titers and concentrations of ADG20 are projected to remain above thresholds anticipated to be required for protection against COVID-19 for up to 52 weeks. These data support the evaluation of a single ADG20 300 mg IM dose for the prevention of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL