Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1397979


Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

COVID-19 Vaccines/immunology , COVID-19/prevention & control , Protein Engineering/methods , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Viral/immunology , Antigens, Viral , Binding Sites , COVID-19/virology , COVID-19 Vaccines/economics , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding , Protein Conformation , Saccharomycetales/metabolism , Vaccines, Subunit
Science ; 370(6521): 1208-1214, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-913668


We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo human angiotensin-converting enzyme 2 (hACE2) decoys to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The best monovalent decoy, CTC-445.2, bound with low nanomolar affinity and high specificity to the receptor-binding domain (RBD) of the spike protein. Cryo-electron microscopy (cryo-EM) showed that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, showed ~10-fold improvement in binding. CTC-445.2d potently neutralized SARS-CoV-2 infection of cells in vitro, and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge.

Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Receptors, Virus/antagonists & inhibitors , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Cricetinae , Cryoelectron Microscopy , Directed Molecular Evolution/methods , Protein Binding , Protein Domains , Protein Engineering/methods , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use , Spike Glycoprotein, Coronavirus/chemistry
bioRxiv ; 2020 Aug 03.
Article in English | MEDLINE | ID: covidwho-721065


There is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins (∼18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.