Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Annals of Intensive Care ; 12(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837129

ABSTRACT

BackgroundLymphopenia is a hallmark of severe coronavirus disease 19 (COVID-19). Similar alterations have been described in bacterial sepsis and therapeutic strategies targeting T cell function such as recombinant human interleukin 7 (rhIL-7) have been proposed in this clinical context. As COVID-19 is a viral sepsis, the objectives of this study were to characterize T lymphocyte response over time in severe COVID-19 patients and to assess the effect of ex vivo administration of rhIL-7.ResultsPeripheral blood mononuclear cells from COVID-19 patients hospitalized in intensive care unit (ICU) were collected at admission and after 20 days. Transcriptomic profile was evaluated through NanoString technology. Inhibitory immune checkpoints expressions were determined by flow cytometry. T lymphocyte proliferation and IFN-γ production were evaluated after ex vivo stimulation in the presence or not of rhIL-7. COVID-19 ICU patients were markedly lymphopenic at admission. Mononuclear cells presented with inhibited transcriptomic profile prevalently with impaired T cell activation pathways. CD4 + and CD8 + T cells presented with over-expression of co-inhibitory molecules PD-1, PD-L1, CTLA-4 and TIM-3. CD4 + and CD8 + T cell proliferation and IFN-γ production were markedly altered in samples collected at ICU admission. These alterations, characteristic of a T cell exhaustion state, were more pronounced at ICU admission and alleviated over time. Treatment with rhIL-7 ex vivo significantly improved both T cell proliferation and IFN-γ production in cells from COVID-19 patients.ConclusionsSevere COVID-19 patients present with features of profound T cell exhaustion upon ICU admission which can be reversed ex vivo by rhIL-7. These results reinforce our understanding of severe COVID-19 pathophysiology and opens novel therapeutic avenues to treat such critically ill patients based of immunomodulation approaches. Defining the appropriate timing for initiating such immune-adjuvant therapy in clinical setting and the pertinent markers for a careful selection of patients are now warranted to confirm the ex vivo results described so far.Trial registration ClinicalTrials.gov identifier: NCT04392401 Registered 18 May 2020, http:// clinicaltrials.gov/ct2/show/NCT04392401.

3.
J Antimicrob Chemother ; 77(5): 1404-1412, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1722504

ABSTRACT

BACKGROUND: The antiviral efficacy of remdesivir in COVID-19 hospitalized patients remains controversial. OBJECTIVES: To estimate the effect of remdesivir in blocking viral replication. METHODS: We analysed nasopharyngeal normalized viral loads from 665 hospitalized patients included in the DisCoVeRy trial (NCT04315948; EudraCT 2020-000936-23), randomized to either standard of care (SoC) or SoC + remdesivir. We used a mathematical model to reconstruct viral kinetic profiles and estimate the antiviral efficacy of remdesivir in blocking viral replication. Additional analyses were conducted stratified on time of treatment initiation (≤7 or >7 days since symptom onset) or viral load at randomization (< or ≥3.5 log10 copies/104 cells). RESULTS: In our model, remdesivir reduced viral production by infected cells by 2-fold on average (95% CI: 1.5-3.2-fold). Model-based simulations predict that remdesivir reduced time to viral clearance by 0.7 days compared with SoC, with large inter-individual variabilities (IQR: 0.0-1.3 days). Remdesivir had a larger impact in patients with high viral load at randomization, reducing viral production by 5-fold on average (95% CI: 2.8-25-fold) and the median time to viral clearance by 2.4 days (IQR: 0.9-4.5 days). CONCLUSIONS: Remdesivir halved viral production, leading to a median reduction of 0.7 days in the time to viral clearance compared with SoC. The efficacy was larger in patients with high viral load at randomization.


Subject(s)
COVID-19 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , SARS-CoV-2
4.
Eur J Anaesthesiol ; 39(5): 427-435, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1707427

ABSTRACT

BACKGROUND: SARS-Cov-2 (COVID-19) has become a major worldwide health concern since its appearance in China at the end of 2019. OBJECTIVE: To evaluate the intrinsic mortality and burden of COVID-19 and seasonal influenza pneumonia in ICUs in the city of Lyon, France. DESIGN: A retrospective study. SETTING: Six ICUs in a single institution in Lyon, France. PATIENTS: Consecutive patients admitted to an ICU with SARS-CoV-2 pneumonia from 27 February to 4 April 2020 (COVID-19 group) and seasonal influenza pneumonia from 1 November 2015 to 30 April 2019 (influenza group). A total of 350 patients were included in the COVID-19 group (18 refused to consent) and 325 in the influenza group (one refused to consent). Diagnosis was confirmed by RT-PCR. Follow-up was completed on 1 April 2021. MAIN OUTCOMES AND MEASURES: Differences in 90-day adjusted-mortality between the COVID-19 and influenza groups were evaluated using a multivariable Cox proportional hazards model. RESULTS: COVID-19 patients were younger, mostly men and had a higher median BMI, and comorbidities, including immunosuppressive condition or respiratory history were less frequent. In univariate analysis, no significant differences were observed between the two groups regarding in-ICU mortality, 30, 60 and 90-day mortality. After Cox modelling adjusted on age, sex, BMI, cancer, sepsis-related organ failure assessment (SOFA) score, simplified acute physiology score SAPS II score, chronic obstructive pulmonary disease and myocardial infarction, the probability of death associated with COVID-19 was significantly higher in comparison to seasonal influenza [hazard ratio 1.57, 95% CI (1.14 to 2.17); P = 0.006]. The clinical course and morbidity profile of both groups was markedly different; COVID-19 patients had less severe illness at admission (SAPS II score, 37 [28 to 48] vs. 48 [39 to 61], P < 0.001 and SOFA score, 4 [2 to 8] vs. 8 [5 to 11], P < 0.001), but the disease was more severe considering ICU length of stay, duration of mechanical ventilation, PEEP level and prone positioning requirement. CONCLUSION: After ICU admission, COVID-19 was associated with an increased risk of death compared with seasonal influenza. Patient characteristics, clinical course and morbidity profile of these diseases is markedly different.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , Female , Hospital Mortality , Hospitals , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Intensive Care Units , Male , Retrospective Studies , SARS-CoV-2 , Seasons
5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-304820

ABSTRACT

Background: The antiviral efficacy of remdesivir is still controversial. We aimed at evaluating its clinical effectiveness in patients with COVID-19 requiring oxygen and/or ventilator support.Methods: In this European multicentre, open-label, parallel-group, randomised, controlled trial in adults hospitalised with COVID-19 (DisCoVeRy, NCT04315948;EudraCT2020-000936-23), participants were randomly allocated to receive usual standard of care alone or in combination with intravenous remdesivir (200 mg on day 1, then 100 mg once-daily for 9 days or until discharge). Treatment assignation was performed via web-based randomisation stratified on illness severity and administrative European region. The primary outcome was the clinical status at day 15 measured by the WHO 7-point ordinal scale, assessed in the intention-to-treat population.Findings: Between March 22nd, 2020 and January 21st, 2021, 857 participants were randomised to one of the two arms in 5 European countries and 832 participants were included for the evaluation of remdesivir (control, n=418;remdesivir, n=414). There was no difference in the clinical status neither at day 15 between treatment groups (OR for remdesivir, 0.98, 95% CI, 0.77 to 1.25, P=0.85) nor at day 29. The proportion of deaths at day 28 was not significantly different between control (8.9%) and remdesivir (8.2%) treatment groups (OR for remdesivir, 0.93 95%CI 0.57 to 1.52, P=0.77). There was also no difference on SARS-CoV-2 viral kinetics (effect of remdesivir on viral load slope, -0.004 log10 cp/10,000 cells/day, 95% CI, -0.03 to 0.02, P=0.75). There was no significant difference in the occurrence of Serious Adverse Events between treatment groups.Interpretation: The use of remdesivir for the treatment of hospitalised patients with COVID-19 was not associated with clinical improvement at day 15 or day 29, nor with a reduction in mortality, nor with a reduction in SARS-CoV-2 RNA.Trial Registration: DisCoVeRy, NCT04315948;EudraCT2020-000936-23Funding: European Union Commission, French Ministry of Health, DIM One Health Île-de-France, REACTing, Fonds Erasme-COVID-ULB;Belgian Health Care Knowledge Centre (KCE)Declaration of Interests: Dr. Costagliola reports grants and personal fees from Janssen, personal fees from Gilead, outside the submitted work. Dr. Mentré reports grants from INSERM Reacting (French Government), grants from Ministry of Health (French Government), grants from European Commission, during the conduct of the study;grants from Sanofi, grants from Roche, outside the submitted work. Dr. Hites reports grants from The Belgian Center for Knowledge (KCE), grants from Fonds Erasme-COVID-ULB, during the conduct of the study;personal fees from Gilead, outside the submitted work. Dr. Mootien reports non-financial support from GILEAD, outside the submitted work. Dr. Gaborit reports non-financial support from Gilead, non- financial support from MSD, outside the submitted work. Dr. Botelho-Nevers reports other from Pfizer, other from Janssen, outside the submitted work. Dr. Lacombe reports personal fees and non-financial support from Gilead, personal fees and non-financial support from Janssen, personal fees and non-financial support from MSD, personal fees and non-financial support from ViiV Healthcare, personal fees and non-financial support from Abbvie, during the conduct of the study. Dr. Wallet reports personal fees and non-financial support from Jazz pharmaceuticals, personal fees and non-financial support from Novartis, personal fees and nonPage financial support from Kite-Gilead, outside the submitted work. Dr. Kimmoun reports personal fees from Aguettan, personal fees from Aspen, outside the submitted work. Dr. Thiery reports personal fees from AMGEN, outside the submitted work. Dr. Burdet reports personal fees from Da Volterra, personal fees from Mylan Pharmaceuticals, outside the submitted work. Dr. Poissy reports personal fees from Gilead for lectures, outside the submitted work. Dr. Goehringer reports personal fees from G lead Sciences, non-financial support from Gilead Sciences, grants from Biomerieux, non-financial support from Pfizer, outside the submitted work. Dr. Peytavin reports personal fees from Gilead Sciences, personal fees from Merck France, personal fees from ViiV Healthcare, personal fees from TheraTechnologies, outside the submitted work. Dr. Danion reports personal fees from Gilead, outside the submitted work. Dr. Raffi reports personal fees from Gilead, personal fees from Janssen, personal fees from MSD, personal fees from Abbvie, personal fees from ViiV Healthcare, personal fees from Theratechnologies, personal fees from Pfizer, outside the submitted work. Dr. Gallien reports personal fees from Gilead, personal fees from Pfizer, personal fees from ViiV, personal fees from MSD, outside the submitted work;and has received consulting fee from Gilead in August 2020 to check the registration file of remdesivir for the French administration. Dr. Nseir reports personal fees from MSD, personal fees from Pfizer, personal fees from Gilead, personal fees from Biomérieux, personal fees from BioRad, outside the submitted work. Dr. Lefèvre reports personal fees from Mylan, personal fees from Gilead, outside the submitted work. Dr. Guedj reports personal fees from Roche, outside the submitted work. Other authors have nothing to disclose.Ethics Approval Statement: The trial was approved by the Ethics Committee (CPP Ile-de-France-III, approval #20.03.06.51744), and is sponsored by the Institut national de la santé et de la recherche médicale (Inserm, France);it was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all included participants (or their legal representatives if unable to consent). The present analysis is based on the protocol v11.0 of December 12th, 2020.

6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327725

ABSTRACT

Objectives: We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-beta-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in COVID-19 inpatients requiring oxygen and/or ventilatory support. While preliminary results were previously published, we present here the final results, following completion of the data monitoring. Methods We conducted a phase 3 multi-centre open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), add-on trial to Solidarity ( NCT04315948 , EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO 7-point ordinal scale. Secondary outcomes included SARS-CoV-2 quantification in respiratory specimens, pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, which were stopped prematurely. Results The intention-to-treat population included 593 participants (lopinavir/ritonavir, n=147;lopinavir/ritonavir-IFN-beta-1a, n=147;hydroxychloroquine, n=150;control, n=149), among whom 421 (71.0%) were male, the median age was 64 years (IQR, 54-71) and 214 (36.1%) had a severe disease. The day 15 clinical status was not improved with investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.82, (95% confidence interval [CI] 0.54-1.25, P=0.36);lopinavir/ritonavir-IFN-beta-1a versus control, aOR 0.69 (95%CI 0.45-1.05, P=0.08);hydroxychloroquine versus control, aOR 0.94 (95%CI 0.62-1.41, P=0.76). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of Serious Adverse Events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. Conclusion In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-beta-1a and hydroxychloroquine did not improve the clinical status at day 15, nor SARS-CoV-2 clearance in respiratory tract specimens.

7.
Lancet Respir Med ; 10(2): 180-190, 2022 02.
Article in English | MEDLINE | ID: covidwho-1537209

ABSTRACT

BACKGROUND: Patients with severe COVID-19 have emerged as a population at high risk of invasive fungal infections (IFIs). However, to our knowledge, the prevalence of IFIs has not yet been assessed in large populations of mechanically ventilated patients. We aimed to identify the prevalence, risk factors, and mortality associated with IFIs in mechanically ventilated patients with COVID-19 under intensive care. METHODS: We performed a national, multicentre, observational cohort study in 18 French intensive care units (ICUs). We retrospectively and prospectively enrolled adult patients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge. The primary outcome was the prevalence of IFIs in all eligible participants with a minimum of three microbiological samples screened during ICU admission, with proven or probable (pr/pb) COVID-19-associated pulmonary aspergillosis (CAPA) classified according to the recent ECMM/ISHAM definitions. Secondary outcomes were risk factors of pr/pb CAPA, ICU mortality between the pr/pb CAPA and non-pr/pb CAPA groups, and associations of pr/pb CAPA and related variables with ICU mortality, identified by regression models. The MYCOVID study is registered with ClinicalTrials.gov, NCT04368221. FINDINGS: Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA. According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39-3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12-6·56], p=0·027), and long duration of mechanical ventilation (>14 days; OR 2·16 [1·14-4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (<1%) had invasive fusariosis. Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26-2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53-3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03-2·03], p=0·033). At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0-72·8) versus 32·1% (27·7-36·7; p<0·0001). INTERPRETATION: This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19. FUNDING: Pfizer.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Adolescent , Adult , Child, Preschool , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
8.
Ther Drug Monit ; 43(4): 451-454, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1501177

ABSTRACT

OBJECTIVE: The authors report on a case of a 59-year-old man hospitalized in the intensive care unit because of severe SARS-COV-2 infection (COVID-19). BACKGROUND: The patient had several comorbidities, including liver cirrhosis. He developed ventilation-associated bacterial pneumonia for which he was administered cefepime at an initial dose of 2 g/8 hours. Therapeutic drug monitoring was performed, showing overexposure with an initial trough concentration of >60 mg/L. METHODS: Analysis of pharmacokinetic data and model-based dose adjustment was performed using BestDose software. RESULTS: The patient had unexpected pharmacokinetic parameter values. Serum creatinine was only moderately increased, whereas measured creatinine clearance based on urine collection showed impaired renal function. Bacterial minimum inhibitory concentration was also considered in the dosing decisions. After dose reduction to 0.5 g/8 hours, the cefepime trough concentration progressively declined and reached the target values by the end of the therapy. A post-hoc analysis provided a different interpretation of drug overexposure. CONCLUSION: This case report illustrates how physiological, microbiological, and drug concentration data can be used for model-based dosage individualization of cefepime in intensive care unit patients.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cefepime/pharmacokinetics , Critical Illness/therapy , Drug Dosage Calculations , Precision Medicine/methods , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cefepime/administration & dosage , Cefepime/adverse effects , Humans , Male , Middle Aged
9.
Trials ; 22(1): 692, 2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1463262

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication of COVID-19 pneumonia, with a mortality rate amounting to 34-50% in moderate and severe ARDS, and is associated with prolonged duration of invasive mechanical ventilation. Such as in non-COVID ARDS, harmful mechanical ventilation settings might be associated with worse outcomes. Reducing the tidal volume down to 4 mL kg-1 of predicted body weight (PBW) to provide ultra-low tidal volume ventilation (ULTV) is an appealing technique to minimize ventilator-inducted lung injury. Furthermore, in the context of a worldwide pandemic, it does not require any additional material and consumables and may be applied in low- to middle-income countries. We hypothesized that ULTV without extracorporeal circulation is a credible option to reduce COVID-19-related ARDS mortality and duration of mechanical ventilation. METHODS: The VT4COVID study is a randomized, multi-centric prospective open-labeled, controlled superiority trial. Adult patients admitted in the intensive care unit with COVID-19-related mild to severe ARDS defined by a PaO2/FiO2 ratio ≤ 150 mmHg under invasive mechanical ventilation for less than 48 h, and consent to participate to the study will be eligible. Patients will be randomized into two balanced parallels groups, at a 1:1 ratio. The control group will be ventilated with protective ventilation settings (tidal volume 6 mL kg-1 PBW), and the intervention group will be ventilated with ULTV (tidal volume 4 mL kg-1 PBW). The primary outcome is a composite score based on 90-day all-cause mortality as a prioritized criterion and the number of ventilator-free days at day 60 after inclusion. The randomization list will be stratified by site of recruitment and generated using random blocks of sizes 4 and 6. Data will be analyzed using intention-to-treat principles. DISCUSSION: The purpose of this manuscript is to provide primary publication of study protocol to prevent selective reporting of outcomes, data-driven analysis, and to increase transparency. Enrollment of patients in the study is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04349618 . Registered on April 16, 2020.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Extracorporeal Circulation , Humans , Prospective Studies , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
11.
Clin Microbiol Infect ; 27(12): 1826-1837, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1242906

ABSTRACT

OBJECTIVES: We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-ß-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in coronavirus 2019 disease (COVID-19) inpatients requiring oxygen and/or ventilatory support. METHODS: We conducted a phase III multicentre, open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), an add-on to the Solidarity trial (NCT04315948, EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO seven-point ordinal scale. Secondary outcomes included quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory specimens and pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, trials of which were stopped prematurely. RESULTS: The intention-to-treat population included 583 participants-lopinavir/ritonavir (n = 145), lopinavir/ritonavir-IFN-ß-1a (n = 145), hydroxychloroquine (n = 145), control (n = 148)-among whom 418 (71.7%) were male, the median age was 63 years (IQR 54-71), and 211 (36.2%) had a severe disease. The day-15 clinical status was not improved with the investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.83, (95% confidence interval (CI) 0.55-1.26, p 0.39), lopinavir/ritonavir-IFN-ß-1a versus control, aOR 0.69 (95%CI 0.45-1.04, p 0.08), and hydroxychloroquine versus control, aOR 0.93 (95%CI 0.62-1.41, p 0.75). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of serious adverse events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. CONCLUSION: In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-ß-1a and hydroxychloroquine improved neither the clinical status at day 15 nor SARS-CoV-2 clearance in respiratory tract specimens.


Subject(s)
Antiviral Agents , COVID-19 , Hydroxychloroquine/therapeutic use , Interferon beta-1a/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Adult , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Combinations , Female , Humans , Male , Middle Aged , Treatment Outcome
12.
Obesity (Silver Spring) ; 29(9): 1477-1486, 2021 09.
Article in English | MEDLINE | ID: covidwho-1219092

ABSTRACT

OBJECTIVE: Previous studies have unveiled a relationship between the severity of coronavirus disease 2019 (COVID-19) pneumonia and obesity. The aims of this multicenter retrospective cohort study were to disentangle the association of BMI and associated metabolic risk factors (diabetes, hypertension, hyperlipidemia, and current smoking status) in critically ill patients with COVID-19. METHODS: Patients admitted to intensive care units for COVID-19 in 21 centers (in Europe, Israel, and the United States) were enrolled in this study between February 19, 2020, and May 19, 2020. Primary and secondary outcomes were the need for invasive mechanical ventilation (IMV) and 28-day mortality, respectively. RESULTS: A total of 1,461 patients were enrolled; the median (interquartile range) age was 64 years (40.9-72.0); 73.2% of patients were male; the median BMI was 28.1 kg/m2 (25.4-32.3); a total of 1,080 patients (73.9%) required IMV; and the 28-day mortality estimate was 36.1% (95% CI: 33.0-39.5). An adjusted mixed logistic regression model showed a significant linear relationship between BMI and IMV: odds ratio = 1.27 (95% CI: 1.12-1.45) per 5 kg/m2 . An adjusted Cox proportional hazards regression model showed a significant association between BMI and mortality, which was increased only in obesity class III (≥40; hazard ratio = 1.68 [95% CI: 1.06-2.64]). CONCLUSIONS: In critically ill COVID-19 patients, a linear association between BMI and the need for IMV, independent of other metabolic risk factors, and a nonlinear association between BMI and mortality risk were observed.


Subject(s)
Body Mass Index , COVID-19 , Pneumonia , COVID-19/mortality , Critical Illness , Europe , Female , Humans , Israel , Male , Middle Aged , Pneumonia/mortality , Retrospective Studies , United States
13.
Ther Drug Monit ; 43(4): 451-454, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1197045

ABSTRACT

OBJECTIVE: The authors report on a case of a 59-year-old man hospitalized in the intensive care unit because of severe SARS-COV-2 infection (COVID-19). BACKGROUND: The patient had several comorbidities, including liver cirrhosis. He developed ventilation-associated bacterial pneumonia for which he was administered cefepime at an initial dose of 2 g/8 hours. Therapeutic drug monitoring was performed, showing overexposure with an initial trough concentration of >60 mg/L. METHODS: Analysis of pharmacokinetic data and model-based dose adjustment was performed using BestDose software. RESULTS: The patient had unexpected pharmacokinetic parameter values. Serum creatinine was only moderately increased, whereas measured creatinine clearance based on urine collection showed impaired renal function. Bacterial minimum inhibitory concentration was also considered in the dosing decisions. After dose reduction to 0.5 g/8 hours, the cefepime trough concentration progressively declined and reached the target values by the end of the therapy. A post-hoc analysis provided a different interpretation of drug overexposure. CONCLUSION: This case report illustrates how physiological, microbiological, and drug concentration data can be used for model-based dosage individualization of cefepime in intensive care unit patients.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cefepime/pharmacokinetics , Critical Illness/therapy , Drug Dosage Calculations , Precision Medicine/methods , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cefepime/administration & dosage , Cefepime/adverse effects , Humans , Male , Middle Aged
14.
Med Mycol ; 59(1): 110-114, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1066375

ABSTRACT

Occurrence of putative invasive pulmonary aspergillosis was screened in 153 consecutive adult intensive care unit (ICU) patients with respiratory samples addressed for mycological diagnosis during a 6-week period at the emergence of coronavirus disease 2019 (COVID-19) pandemic. Positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) was observed for 106 patients (69.3%). Nineteen of them (17.9%) with positive Aspergillus results were considered as having putative invasive pulmonary aspergillosis. These observations underline the risk of pulmonary aspergillosis in COVID-19 patients, even in patients not previously known to be immunosuppressed, advocating active search for Aspergillus infection and prompt antifungal treatment. Standardized surveillance protocols and updated definitions for ICU putative invasive pulmonary aspergillosis are needed. LAY ABSTRACT: Adult ICU patients with respiratory samples addressed for mycological diagnosis were screened during the emergence of COVID-19 pandemic. Positive SARS-CoV-2 PCR was observed for 106 patients, nineteen of them (17.9%) having aspergillosis. This underlines the risk of aspergillosis in COVID-19 patients.


Subject(s)
COVID-19/complications , Critical Illness , Invasive Pulmonary Aspergillosis/etiology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Female , Humans , Intensive Care Units , Male , Middle Aged
16.
Cell Mol Immunol ; 17(9): 1001-1003, 2020 09.
Article in English | MEDLINE | ID: covidwho-690856
SELECTION OF CITATIONS
SEARCH DETAIL