Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
International Review of Financial Analysis ; : 102602.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2240510

ABSTRACT

There is no doubt that oil price shocks significantly affect oil-producing countries' macroeconomic fundamentals and financial stability, mainly in crisis times. The recent oil price shocks, coupled with the COVID-19 pandemic, motivated us to investigate the connectedness and risk transmission among oil shocks and banking sectors in the Gulf Cooperation Council (GCC) economies from June 30, 2006, to September 9, 2021. Thus, we construct multilayer information spillover networks between oil price shocks and GCC banking sectors. The empirical results show that the Bahrain banking sector depicts the highest connectedness and risk transmission with oil price shocks on the extreme risk spillover layer. In addition, Kuwait and the United Arab Emirates are highly connected to oil demand shocks. Furthermore, we find a substantial increase in extreme risk spillover and volatility spillover layers during the COVID-19 period. The results of this paper have some important implications for regional portfolio risk management, alleviating systemic risk, and developing hedging and investment strategies.

2.
Phytomedicine ; 108, 2023.
Article in English | GIM | ID: covidwho-2246481

ABSTRACT

Background: A wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant rapidly resulted in a steep increase in the infected population and an overloaded healthcare system. Effective medications for Omicron are currently limited. The previous observational study supports the efficacy and safety of Reyanning (RYN) mixture in the treatment of coronavirus disease 2019 (COVID-19). Purpose: To evaluate the efficacy of RYN in asymptomatic and mildly infected patients with SARS-CoV-2 infection. Study Design and methods: This study was a prospective, open-label, randomized controlled trial. We consecutively recruited 2830 patients from Shanghai New International Expo Center mobile cabin hospital and randomized them in a 1:1 ratio to receive RYN plus standard care or receive standard care alone. The primary outcomes were the negative conversion of nucleic acid. Secondary outcomes included the hospital duration, new-onset symptoms, proportion of disease progression, and the viral load measured by the cycle threshold (Ct) value. Results: A total of 1393 patients in the intervention group and 1407 patients in the control group completed the study. The negative conversion time of nucleic acid was significantly shortened in the intervention group (median: 6 d vs. 7 d, Hazard ratio: 0.768, 95CI %: 0.713-0.828, p < 0.0001). The negative conversion rate of nucleic acid was significantly higher in the intervention group (Day 3: 32.4% vs. 18.3%;Day7: 65.3% vs. 55.2%, p < 0.001). The hospitalization duration was significantly shortened in the intervention group (median: 8 d vs. 9 d, Hazard ratio: 0.759, 95% CI: 0.704-0.818, p < 0.0001). The proportion of new-onset fever (2.4% vs. 4.1%, p = 0.012), coughing (12.2% vs. 14.8%, p = 0.046), and expectoration (6.0% vs. 8.0%, p = 0.032) in the intervention group was significantly lower. RYN treatment increased Ct values and reduced the viral load. No disease progression and serious adverse events were reported during the study. Conclusion: RYN is a safe and effective treatment that can accelerate virus clearance and promote disease recovery in asymptomatic and mild Omicron infections.

3.
Comput Biol Med ; 155: 106586, 2023 03.
Article in English | MEDLINE | ID: covidwho-2246202

ABSTRACT

Mortality prediction is crucial to evaluate the severity of illness and assist in improving the prognosis of patients. In clinical settings, one way is to analyze the multivariate time series (MTSs) of patients based on their medical data, such as heart rates and invasive mean arterial blood pressure. However, this suffers from sparse, irregularly sampled, and incomplete data issues. These issues can compromise the performance of follow-up MTS-based analytic applications. Plenty of existing methods try to deal with such irregular MTSs with missing values by capturing the temporal dependencies within a time series, yet in-depth research on modeling inter-MTS couplings remains rare and lacks model interpretability. To this end, we propose a bidirectional time and multi-feature attention coupled network (BiT-MAC) to capture the temporal dependencies (i.e., intra-time series coupling) and the hidden relationships among variables (i.e., inter-time series coupling) with a bidirectional recurrent neural network and multi-head attention, respectively. The resulting intra- and inter-time series coupling representations are then fused to estimate the missing values for a more robust MTS-based prediction. We evaluate BiT-MAC by applying it to the missing-data corrupted mortality prediction on two real-world clinical datasets, i.e., PhysioNet'2012 and COVID-19. Extensive experiments demonstrate the superiority of BiT-MAC over cutting-edge models, verifying the great value of the deep and hidden relations captured by MTSs. The interpretability of features is further demonstrated through a case study.


Subject(s)
COVID-19 , Humans , Time Factors , Heart Rate , Neural Networks, Computer
4.
Adv Fiber Mater ; : 1-30, 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2236785

ABSTRACT

Abstract: In the recent COVID-19 pandemic, World Health Organization emphasized that early detection is an effective strategy to reduce the spread of SARS-CoV-2 viruses. Several diagnostic methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and lateral flow immunoassay (LFIA), have been applied based on the mechanism of specific recognition and binding of the probes to viruses or viral antigens. Although the remarkable progress, these methods still suffer from inadequate cellular materials or errors in the detection and sampling procedure of nasopharyngeal/oropharyngeal swab collection. Therefore, developing accurate, ultrafast, and visualized detection calls for more advanced materials and technology urgently to fight against the epidemic. In this review, we first summarize the current methodologies for SARS-CoV-2 diagnosis. Then, recent representative examples are introduced based on various output signals (e.g., colorimetric, fluorometric, electronic, acoustic). Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development.

5.
NPJ Vaccines ; 7(1): 169, 2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2185870

ABSTRACT

The SARS-CoV-2 Omicron variant harbors more than 30 mutations in its spike (S) protein. Circulating Omicron subvariants, particularly BA5 and other variants of concern (VOCs), show increased resistance to COVID-19 vaccines that target the original S protein, calling for an urgent need for effective vaccines to prevent multiple SARS-CoV-2 VOCs. Here, we evaluated the neutralizing activity and protection conferred by a BA1-S subunit vaccine when combined with or used as booster doses after, administration of wild-type S protein (WT-S). A WT-S/BA1-S cocktail, or WT-S prime and BA1-S boost, induced significantly higher neutralizing antibodies against pseudotyped Omicron BA1, BA2, BA2.12.1, and BA5 subvariants, and similar or higher neutralizing antibodies against the original SARS-CoV-2, than the WT-S protein alone. The WT-S/BA1-S cocktail also elicited higher or significantly higher neutralizing antibodies than the WT-S-prime-BA1-S boost, WT-S alone, or BA1-S alone against pseudotyped SARS-CoV-2 Alpha, Beta, Gamma, and Delta VOCs, and SARS-CoV, a closely related beta-coronavirus using the same receptor as SARS-CoV-2 for viral entry. By contrast, WT-S or BA1-S alone failed to induce potent neutralizing antibodies against all these viruses. Similar to the WT-S-prime-BA1-S boost, the WT-S/BA1-S cocktail completely protected mice against the lethal challenge of a Delta variant with negligible weight loss. Thus, we have identified an effective vaccination strategy that elicits potent, broadly, and durable neutralizing antibodies against circulating SARS-CoV-2 Omicron subvariants, other VOCs, original SARS-CoV-2, and SARS-CoV. These results will provide useful guidance for developing efficacious vaccines that inhibit current and future SARS-CoV-2 variants to control the COVID-19 pandemic.

6.
Adv Fiber Mater ; : 1-30, 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2175605

ABSTRACT

Abstract: In the recent COVID-19 pandemic, World Health Organization emphasized that early detection is an effective strategy to reduce the spread of SARS-CoV-2 viruses. Several diagnostic methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and lateral flow immunoassay (LFIA), have been applied based on the mechanism of specific recognition and binding of the probes to viruses or viral antigens. Although the remarkable progress, these methods still suffer from inadequate cellular materials or errors in the detection and sampling procedure of nasopharyngeal/oropharyngeal swab collection. Therefore, developing accurate, ultrafast, and visualized detection calls for more advanced materials and technology urgently to fight against the epidemic. In this review, we first summarize the current methodologies for SARS-CoV-2 diagnosis. Then, recent representative examples are introduced based on various output signals (e.g., colorimetric, fluorometric, electronic, acoustic). Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development.

7.
Virol J ; 19(1): 186, 2022 11 13.
Article in English | MEDLINE | ID: covidwho-2117998

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which is currently a worldwide pandemic. There are limited available treatments for severe COVID-19 patients. However, some evidence suggests that intravenous immunoglobulin (IVIg) provides clinical benefits for these patients. METHODS: We administered IVIg to 23 severe COVID-19 patients, and all of them survived. Four related coronaviruses can cause the common cold. We speculated that cross-reactivity of SARS-CoV-2 and other common coronaviruses might partially explain the clinical efficacy of IVIg therapy. Thus, we performed multiple alignment analysis of the spike (S), membrane (M), and nucleotide (N) proteins from SARS-CoV-2 and the common coronaviruses to identify conserved regions. Next, we synthesized 25 peptides that were conserved regions and tested their IVIg seropositivity. RESULTS: The results indicated four peptides had significant or nearly significant seropositivity, and all of them were associated with the S and M proteins. Examination of the immune responses of healthy volunteers to each synthetic peptide indicated high seropositivity to the two peptides from S protein. Blood samples from healthy individuals may have pre-existing anti-SARS-CoV-2 IgGs, and IVIg is a potentially effective therapy for severe COVID-19. CONCLUSION: In conclusion, blood samples from many healthy individuals have pre-existing anti-SARS-CoV-2 IgGs, and IVIg may be an effective therapy for severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Immunoglobulins, Intravenous/therapeutic use , Antibodies, Viral/therapeutic use , Immunoglobulin G
8.
J Transl Med ; 20(1): 473, 2022 10 20.
Article in English | MEDLINE | ID: covidwho-2079431

ABSTRACT

BACKGROUND: As a key process in transcriptional regulatory mechanisms, alternative splicing (AS) plays a crucial role in maintaining the diversity of RNA and protein expression, and mediates the immune response in infectious diseases, especially for the COVID-19. Therefore, urgent data gathering and more research of AS profiles in microbe-infected human cells are needed to improve understanding of COVID-19 and related infectious diseases. Herein, we have created CASA, the COVID-19 Alternative Splicing Atlas to provide a convenient computing platform for studies of AS in COVID-19 and COVID-19-related infectious diseases. METHODS: In CASA, we reanalyzed thousands of RNA-seq datasets generated from 65 different tissues, organoids and cell lines to systematically obtain quantitative data on AS events under different conditions. A total of 262,994 AS events from various infectious diseases with differing severity were detected and visualized in this database. In order to explore the potential function of dynamics AS events, we performed analysis of functional annotations and drug-target interactions affected by AS in each dataset. RNA-binding proteins (RBPs), which may regulate these dynamic AS events are also provided for users in this database. RESULTS: CASA displays microbe-induced alterations of the host cell splicing landscape across different virus families and helps users identify condition-specific splicing patterns, as well as their potential regulators. CASA may greatly facilitate the exploration of AS profiles and novel mechanisms of host cell splicing by viral manipulation. CASA is freely available at http://www.splicedb.net/casa/ .


Subject(s)
Alternative Splicing , COVID-19 , Humans , Alternative Splicing/genetics , COVID-19/genetics , RNA Splicing , RNA-Binding Proteins/genetics , RNA/metabolism
9.
J Virol ; 96(17): e0090722, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2001774

ABSTRACT

The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus, Feline , Drug Resistance, Viral , Mutation , Protease Inhibitors , Animals , Antiviral Agents/pharmacology , Cats/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus, Feline/drug effects , Coronavirus, Feline/enzymology , Coronavirus, Feline/genetics , Drug Resistance, Viral/genetics , Protease Inhibitors/pharmacology
10.
J Virol ; 96(17): e0011822, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992935

ABSTRACT

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes , Glycosylation , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit/immunology
11.
Virus Evol ; 8(1): veac049, 2022.
Article in English | MEDLINE | ID: covidwho-1922334

ABSTRACT

Coronavirus infections cause diseases that range from mild to severe in mammals and birds. In this study, we detected coronavirus infections in 748 farmed wild animals of 23 species in Guangdong, southern China, by RT-PCR and metagenomic analysis. We identified four coronaviruses in these wild animals and analysed their evolutionary origins. Coronaviruses detected in Rhizomys sinensis were genetically grouped into canine and rodent coronaviruses, which were likely recombinants of canine and rodent coronaviruses. The coronavirus found in Phasianus colchicus was a recombinant pheasant coronavirus of turkey coronavirus and infectious bronchitis virus. The coronavirus in Paguma larvata had a high nucleotide identity (94.6-98.5 per cent) with a coronavirus of bottlenose dolphin (Tursiops truncates). These findings suggested that the wildlife coronaviruses may have experienced homologous recombination and/or crossed the species barrier, likely resulting in the emergence of new coronaviruses. It is necessary to reduce human-animal interactions by prohibiting the eating and raising of wild animals, which may contribute to preventing the emergence of the next coronavirus pandemic.

12.
J Zhejiang Univ Sci B ; 23(6): 451-460, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1892437

ABSTRACT

Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , Seasons , Spike Glycoprotein, Coronavirus
13.
EClinicalMedicine ; 37: 100986, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1283305

ABSTRACT

BACKGROUND: Upper respiratory infections (URIs) are among the most common diseases. However, the related burden has not been comprehensively evaluated. Thus, we designed the present study to describe the global and regional burden of URIs from 1990 to 2019. METHODS: A secondary analysis was performed on the incidence, mortality, and disability-adjusted life years (DALYs) of URIs in different sex and age groups, from 21 geographic regions, 204 countries and territories, between 1990 and 2019, using the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Countries and territories were categorized according to Socio-demographic Index (SDI) quintiles. FINDINGS: Globally, the incident cases of URIs reached 17·2 (95% uncertainty interval: 15·4 to 19·3) billion in 2019, which accounted for 42·83% (40·01% to 45·77%) cases from all causes in the GBD 2019 study. The age-standardized incidence rate remained stable from 1990 to 2019, while significant decreases were found in the mortality and DALY rate. The highest age-standardized incidence rates from 1990 to 2019 and the highest age-standardized DALY rates after 2011 were observed in high SDI regions. Among all the age groups, children under five years old suffered from the highest incidence and DALY rates, both of which were decreased with increasing age. Fatal consequences of URIs occurred mostly in the elderly and children under five years old. INTERPRETATION: The present study provided comprehensive estimates of URIs burden for the first time. Our findings, highlighting the substantial incidence and considerable DALYs due to URIs, are expected to attract more attention to URIs and provide future explorations in the prevention and treatment with epidemiological evidence. FUNDING: The study was funded by the National Natural Science Foundation of China (81770057).

14.
Aging (Albany NY) ; 13(5): 7020-7034, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1106628

ABSTRACT

BACKGROUND: The inflammatory reaction is the main cause of acute respiratory distress syndrome and multiple organ failure in patients with Coronavirus disease 2019, especially those with severe and critical illness. Several studies suggested that high-dose vitamin C reduced inflammatory reaction associated with sepsis and acute respiratory distress syndrome. This study aimed to determine the efficacy and safety of high-dose vitamin C in Coronavirus disease 2019. METHODS: We included 76 patients with Coronavirus disease 2019, classified into the high-dose vitamin C group (loading dose of 6g intravenous infusion per 12 hr on the first day, and 6g once for the following 4 days, n=46) and the standard therapy group (standard therapy alone, n=30). RESULTS: The risk of 28-day mortality was reduced for the high-dose vitamin C versus the standard therapy group (HR=0.14, 95% CI, 0.03-0.72). Oxygen support status was improved more with high-dose vitamin C than standard therapy (63.9% vs 36.1%). No safety events were associated with high-dose vitamin C therapy. CONCLUSION: High-dose vitamin C may reduce the mortality and improve oxygen support status in patients with Coronavirus disease 2019 without adverse events.


Subject(s)
Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , Vitamins/therapeutic use , Aged , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , COVID-19/diagnosis , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Treatment Outcome , Vitamins/administration & dosage , Vitamins/adverse effects
15.
BMC Infect Dis ; 21(1): 206, 2021 Feb 24.
Article in English | MEDLINE | ID: covidwho-1102331

ABSTRACT

BACKGROUND: There is limited information on the difference in epidemiology, clinical characteristics and outcomes of the initial outbreak of the coronavirus disease (COVID-19) in Wuhan (the epicenter) and Sichuan (the peripheral area) in the early phase of the COVID-19 pandemic. This study was conducted to investigate the differences in the epidemiological and clinical characteristics of patients with COVID-19 between the epicenter and peripheral areas of pandemic and thereby generate information that would be potentially helpful in formulating clinical practice recommendations to tackle the COVID-19 pandemic. METHODS: The Sichuan & Wuhan Collaboration Research Group for COVID-19 established two retrospective cohorts that separately reflect the epicenter and peripheral area during the early pandemic. The epidemiology, clinical characteristics and outcomes of patients in the two groups were compared. Multivariate regression analyses were used to estimate the adjusted odds ratios (aOR) with regard to the outcomes. RESULTS: The Wuhan (epicenter) cohort included 710 randomly selected patients, and the peripheral (Sichuan) cohort included 474 consecutive patients. A higher proportion of patients from the periphery had upper airway symptoms, whereas a lower proportion of patients in the epicenter had lower airway symptoms and comorbidities. Patients in the epicenter had a higher risk of death (aOR=7.64), intensive care unit (ICU) admission (aOR=1.66), delayed time from illness onset to hospital and ICU admission (aOR=6.29 and aOR=8.03, respectively), and prolonged duration of viral shedding (aOR=1.64). CONCLUSIONS: The worse outcomes in the epicenter could be explained by the prolonged time from illness onset to hospital and ICU admission. This could potentially have been associated with elevated systemic inflammation secondary to organ dysfunction and prolonged duration of virus shedding independent of age and comorbidities. Thus, early supportive care could achieve better clinical outcomes.


Subject(s)
COVID-19/complications , SARS-CoV-2 , Adult , Aged , COVID-19/virology , China/epidemiology , Comorbidity , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Virus Shedding
16.
Open Med (Wars) ; 16(1): 134-138, 2021.
Article in English | MEDLINE | ID: covidwho-1058322

ABSTRACT

While countries are in a hurry to obtain SARS-CoV-2 vaccine, we are concerned with the availability of vaccine and whether a vaccine will be available to all in need. We predicted three possible scenarios for vaccine distributions and urge an international united action on the worldwide equitable access. In case the international community does not reach a consensus on how to distribute the vaccine to achieve worldwide equitable access, we call for a distribution plan that includes the employees in international transportation industries and international travelers to halt the disease transmission and promote the recovery of the global economy.

17.
Transl Psychiatry ; 10(1): 411, 2020 11 24.
Article in English | MEDLINE | ID: covidwho-943885

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been classified as a pandemic, and mental hospitals located in epidemic centers have been affected. Social isolation is an important and irreplaceable measure to control the spread of the epidemic. In this study, schizophrenic patients who were subjected to social isolation after close contact with COVID-19 patients were used as participants to explore the impact of social isolation on common inflammatory indicators and psychological characteristics. A total of 30 patients with schizophrenia were recruited from Wuhan Mental Health Center. In addition, 30 ordinary schizophrenic patients were matched with the isolation group and were recruited from another branch of Wuhan Mental Health Center as controls. We compared the differences in common inflammatory indicators and psychological characteristics between the isolated group and the control group, and longitudinal comparison of the differences in the above indicators before and after isolation among the isolation group. The Chinese Perceived Stress Scale (CPSS) score, Hamilton Depression Scale (HAMD) score and Hamilton Anxiety Scale (HAMA) score of the isolation group were significantly higher than those of the control group (p = 0.00, 0.00, 0.00, respectively). The C-reactive protein (CRP) level, CPSS score, HAMA score and Pittsburgh sleep quality index (PSQI) score of the isolation group were significantly higher after isolation (p = 0.01, 0.00, 0.00, 0.00, 0.00, respectively). Inpatients of schizophrenia suffered from social isolation due to COVID-19 have a severe psychological burden. Social isolation caused patients to develop a weak inflammatory state and led to worse anxiety and sleep quality.


Subject(s)
COVID-19/prevention & control , COVID-19/psychology , Inpatients/psychology , Quarantine/psychology , Schizophrenic Psychology , Social Isolation/psychology , Adult , COVID-19/complications , Case-Control Studies , China , Female , Hospitalization , Hospitals, Psychiatric , Humans , Male , Middle Aged , Schizophrenia/complications , Surveys and Questionnaires
18.
Clin Infect Dis ; 71(16): 2150-2157, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-936373

ABSTRACT

BACKGROUND: Thymosin alpha 1 (Tα1) had been used in the treatment of viral infections as an immune response modifier for many years. However, clinical benefits and the mechanism of Tα1 treatment for COVID-19 patients are still unclear. METHODS: We retrospectively reviewed the clinical outcomes of 76 severe COVID-19 cases admitted to 2 hospitals in Wuhan, China, from December 2019 to March 2020. The thymus output in peripheral blood mononuclear cells from COVID-19 patients was measured by T-cell receptor excision circles (TRECs). The levels of T-cell exhaustion markers programmed death-1 (PD-1) and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) on CD8+ T cells were detected by flow cytometry. RESULTS: Compared with the untreated group, Tα1 treatment significantly reduced the mortality of severe COVID-19 patients (11.11% vs 30.00%, P = .044). Tα1 enhanced blood T-cell numbers in COVID-19 patients with severe lymphocytopenia. Under such conditions, Tα1 also successfully restored CD8+ and CD4+ T-cell numbers in elderly patients. Meanwhile, Tα1 reduced PD-1 and Tim-3 expression on CD8+ T cells from severe COVID-19 patients compared with untreated cases. It is of note that restoration of lymphocytopenia and acute exhaustion of T cells were roughly parallel to the rise of TRECs. CONCLUSIONS: Tα1 treatment significantly reduced mortality of severe COVID-19 patients. COVID-19 patients with counts of CD8+ T cells or CD4+ T cells in circulation less than 400/µL or 650/µL, respectively, gained more benefits from Tα1. Tα1 reversed T-cell exhaustion and recovered immune reconstitution through promoting thymus output during severe acute respiratory syndrome-coronavirus 2 infection.


Subject(s)
COVID-19/mortality , Lymphopenia/metabolism , SARS-CoV-2/pathogenicity , Thymalfasin/metabolism , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , Retrospective Studies , Thymalfasin/genetics , Thymus Gland/metabolism
19.
Respiration ; 99(9): 755-763, 2020.
Article in English | MEDLINE | ID: covidwho-910309

ABSTRACT

BACKGROUND: Effective auscultations are often hard to implement in isolation wards. To date, little is known about the characteristics of pulmonary auscultation in novel coronavirus (COVID-19) pneumonia. OBJECTIVES: The aim of this study was to explore the features and clinical significance of pulmonary auscultation in COVID-19 pneumonia using an electronic stethoscope in isolation wards. METHODS: This cross-sectional, observational study was conducted among patients with laboratory-confirmed COVID-19 at Wuhan Red-Cross Hospital during the period from January 27, 2020, to February 12, 2020. Standard auscultation with an electronic stethoscope was performed and electronic recordings of breath sounds were analyzed. RESULTS: Fifty-seven patients with average age of 60.6 years were enrolled. The most common symptoms were cough (73.7%) during auscultation. Most cases had bilateral lesions (96.4%) such as multiple ground-glass opacities (69.1%) and fibrous stripes (21.8%). High-quality auscultation recordings (98.8%) were obtained, and coarse breath sounds, wheezes, coarse crackles, fine crackles, and Velcro crackles were identified. Most cases had normal breath sounds in upper lungs, but the proportions of abnormal breath sounds increased in the basal fields where Velcro crackles were more commonly identified at the posterior chest. The presence of fine and coarse crackles detected 33/39 patients with ground-glass opacities (sensitivity 84.6% and specificity 12.5%) and 8/9 patients with consolidation (sensitivity 88.9% and specificity 15.2%), while the presence of Velcro crackles identified 16/39 patients with ground-glass opacities (sensitivity 41% and specificity 81.3%). CONCLUSIONS: The abnormal breath sounds in COVID-19 pneumonia had some consistent distributive characteristics and to some extent correlated with the radiologic features. Such evidence suggests that electronic auscultation is useful to aid diagnosis and timely management of the disease. Further studies are indicated to validate the accuracy and potential clinical benefit of auscultation in detecting pulmonary abnormalities in COVID-19 infection.


Subject(s)
Auscultation , COVID-19/physiopathology , Lung/physiopathology , Respiratory Sounds/physiopathology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19/therapy , China , Cough/physiopathology , Cross-Sectional Studies , Electrical Equipment and Supplies , Female , Glucocorticoids/therapeutic use , Humans , Lung/diagnostic imaging , Male , Middle Aged , Oxygen Inhalation Therapy , Respiration, Artificial , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index , Smartphone , Sound Spectrography , Sputum , Stethoscopes , Tomography, X-Ray Computed , Young Adult , COVID-19 Drug Treatment
20.
JAMA Ophthalmol ; 138(11): 1201-1204, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-841333

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) has been recognized as a pandemic by the World Health Organization. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also infect tissues besides the respiratory system, such as the ocular tissues, remains unclear. Objective: To determine whether SARS-CoV-2 exists intracellularly in the ocular tissues of a patient previously infected with COVID-19. Design, Setting, and Participants: This case study analyzed a patient previously infected with COVID-19 who had an acute glaucoma attack during her rehabilitation. Plasma samples and tissue specimens, including ones from the conjunctiva, anterior lens capsular, trabecular meshwork, and iris, were collected during phacoemulsification and trabeculectomy surgery. Specimens from another patient who had glaucoma but not COVID-19 were used as a negative control. Main Outcomes and Measures: Specimens were analyzed using hematoxylin-eosin staining. The nucleocapsid protein antigen of SARS-CoV-2 was measured in the conjunctiva, trabecular meshwork, and iris using immunofluorescence and immunohistochemistry. The expression of angiotensin-converting enzyme 2 receptor on the conjunctiva was measured using immunohistochemistry. Results: The patient with a previous COVID-19 infection was female and 64 years old, and the control patient without a COVID-19 infection history was male and 61 years old. The nucleocapsid protein antigen of SARS-CoV-2 was detected on the cells of the conjunctiva, trabecular, and iris of the patient infected with COVID-19 but not in the control participant, while angiotensin-converting enzyme 2 receptor proteins were detected on the conjunctiva of both patients. Conclusions and Relevance: The nucleocapsid protein antigen of SARS-CoV-2 existed intracellularly in the ocular tissues of a patient previously infected with COVID-19. Thus, SARS-CoV-2 can also infect ocular tissues in addition to the respiratory system.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/isolation & purification , Eye/virology , Female , Humans , Middle Aged , Phosphoproteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL