Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 12: 766821, 2021.
Article in English | MEDLINE | ID: covidwho-1581335

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and spread around the world, antibodies and vaccines to confer broad and potent neutralizing activity are urgently needed. Through the isolation and characterization of monoclonal antibodies (mAbs) from individuals infected with SARS-CoV-2, we identified one antibody, P36-5D2, capable of neutralizing the major SARS-CoV-2 variants of concern. Crystal and electron cryo-microscopy (cryo-EM) structure analyses revealed that P36-5D2 targeted to a conserved epitope on the receptor-binding domain of the spike protein, withstanding the three key mutations-K417N, E484K, and N501Y-found in the variants that are responsible for escape from many potent neutralizing mAbs, including some already approved for emergency use authorization (EUA). A single intraperitoneal (IP) injection of P36-5D2 as a prophylactic treatment completely protected animals from challenge of infectious SARS-CoV-2 Alpha and Beta. Treated animals manifested normal body weight and were devoid of infection-associated death up to 14 days. A substantial decrease of the infectious virus in the lungs and brain, as well as reduced lung pathology, was found in these animals compared to the controls. Thus, P36-5D2 represents a new and desirable human antibody against the current and emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , HEK293 Cells , Humans , Immunization, Passive , Mice
2.
Cell Rep ; 38(2): 110205, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588142

ABSTRACT

Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.

3.
Clin Infect Dis ; 73(9): e2814-e2817, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501023

ABSTRACT

Intrahost analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences identified 2 viral haplotypes comprised of 3 genetically linked mutations from the respiratory and intestinal tracts of a patient with coronavirus disease 2019. Spatiotemporal data suggest that this patient initially had dual infection of 2 SARS-CoV-2 variants, which subsequently redistributed into the 2 systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Respiratory System
4.
Am J Respir Crit Care Med ; 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430274

ABSTRACT

RATIONALE: Alteration of human respiratory microbiota had been observed in COVID-19. How the microbiota is associated with the prognosis in COVID-19 is unclear. OBJECTIVES: To characterize the feature and dynamics of the respiratory microbiota and its associations with clinical features in COVID-19 patients. Methods:We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 COVID-19 patients (including 39 deceased patients), and 95 healthy controls from the same geographic area. Meanwhile, the concentration of 27 cytokines and chemokines in plasma was measured for COVID-19 patients. MEASUREMENTS AND MAIN RESULTS: The upper respiratory tract (URT) microbiota in COVID-19 patients differed from that in healthy controls, while deceased patients possessed a more distinct microbiota, both on admission and before discharge/death. The alteration of URT microbiota showed a significant correlation with the concentration of proinflammatory cytokines and mortality. Specifically, Streptococcus-dominated microbiota was enriched in recovered patients, and show high temporal stability and resistance against pathogens. In contrast, the microbiota in deceased patients was more susceptible to secondary infections, and became more deviated from the normality after admission. Moreover, the abundance of S. parasanguinis on admission was significantly correlated with prognosis in non-severe patients (lower vs. higher abundance, odds ratio=7.80, [95% CI 1.70-42.05]). Conclusions:URT microbiota dysbiosis is a remarkable manifestation of COVID-19; its association with mortality suggests it may reflect the interplay between pathogens, symbionts, and the host immune status. Whether URT microbiota could be used as a biomarker for the diagnosis and prognosis of respiratory diseases merits further investigation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

5.
Mol Cell ; 80(6): 1123-1134.e4, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-939163

ABSTRACT

Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for understanding viral spread and evolution as well as for vaccine development. Existing RNA sequencing methods are demanding on user technique and time and, thus, not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We developed a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. We demonstrate the utility of our approach on pharyngeal, sputum, and stool samples collected from coronavirus disease 2019 (COVID-19) patients, successfully obtaining whole metatranscriptomes and complete high-depth, high-coverage SARS-CoV-2 genomes with high yield and robustness. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate molecular epidemiology studies during current and future outbreaks.


Subject(s)
COVID-19/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing , Animals , Humans , Mice , NIH 3T3 Cells , RNA, Viral/metabolism , SARS-CoV-2/metabolism
7.
Nat Commun ; 11(1): 5503, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-894393

ABSTRACT

The spread of SARS-CoV-2 in Beijing before May, 2020 resulted from transmission following both domestic and global importation of cases. Here we present genomic surveillance data on 102 imported cases, which account for 17.2% of the total cases in Beijing. Our data suggest that all of the cases in Beijing can be broadly classified into one of three groups: Wuhan exposure, local transmission and overseas imports. We classify all sequenced genomes into seven clusters based on representative high-frequency single nucleotide polymorphisms (SNPs). Genomic comparisons reveal higher genomic diversity in the imported group compared to both the Wuhan exposure and local transmission groups, indicating continuous genomic evolution during global transmission. The imported group show region-specific SNPs, while the intra-host single nucleotide variations present as random features, and show no significant differences among groups. Epidemiological data suggest that detection of cases at immigration with mandatory quarantine may be an effective way to prevent recurring outbreaks triggered by imported cases. Notably, we also identify a set of novel indels. Our data imply that SARS-CoV-2 genomes may have high mutational tolerance.


Subject(s)
Betacoronavirus/growth & development , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , Beijing/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Female , Genome, Viral , Genomics , Genotype , Humans , Male , Middle Aged , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Travel , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...