Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Biosaf Health ; 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2085979

ABSTRACT

We analyzed variations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome during a flight-related cluster outbreak of coronavirus disease 2019 (COVID-19) in Shenzhen, China, to explore the characteristics of SARS-CoV-2 transmission and intra-host single nucleotide variations (iSNVs) in a confined space. Thirty-three patients with COVID-19 were sampled, and 14 were resampled 3-31 days later. All 47 nasopharyngeal swabs were deep sequenced. iSNVs and similarities in the consensus genome sequence were analyzed. Three SARS-CoV-2 variants of concern, Delta (n=31), Beta (n=1), and C.1.2 (n=1), were detected among the 33 patients. The viral genome sequences from 30 Delta-positive patients had similar SNVs; 14 of these patients provided two successive samples. Overall, the 47 sequenced genomes contained 164 iSNVs. Of the 14 paired (successive) samples, the second samples (T2) contained more iSNVs (median: 3; 95% confidence interval [95%CI]: 2.77-10.22) than did the first samples (T1; median: 2; 95%CI: 1.63-3.74; Wilcoxon test, P=0.021). 38 iSNVs were detected in T1 samples, and only seven were also detectable in T2 samples. Notably, T2 samples from two of the 14 paired samples had additional mutations than the T1 samples. The iSNVs of the SARS-CoV-2 genome exhibited rapid dynamic changes during a flight-related cluster outbreak event. Intra-host diversity increased gradually with time, and new site mutations occurred in vivo without a population transmission bottleneck. Therefore, we could not determine the generational relationship from the mutation site changes alone.

2.
Sci Adv ; 8(38): eabm6668, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2053083

ABSTRACT

Viruses exploit host cell machinery to support their replication. Defining the cellular proteins and processes required for a virus during infection is crucial to understanding the mechanisms of virally induced disease and designing host-directed therapeutics. Here, we perform a genome-wide CRISPR-Cas9-based screening in lung epithelial cells infected with the PR/8/NS1-GFP virus and use GFPhi cell as a unique screening marker to identify host factors that inhibit influenza A virus (IAV) infection. We discovered that APOE affects influenza virus infection both in vitro and in vivo. Cell deficiency in APOE conferred substantially increased susceptibility to IAV; mice deficient in APOE manifested more severe lung pathology, increased virus load, and decreased survival rate. Mechanistically, lack of cell-produced APOE results in impaired cell cholesterol homeostasis, enhancing influenza virus attachment. Thus, we identified a previously unrecognized role of APOE in restraining IAV infection.


Subject(s)
Communicable Diseases , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Apolipoproteins , Apolipoproteins E/genetics , Cholesterol , Host-Pathogen Interactions , Humans , Influenza, Human/genetics , Mice , Orthomyxoviridae Infections/genetics , Virus Replication
3.
Viral Immunol ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2051254

ABSTRACT

COVID-19 is a globally infectious viral epidemic of great public health concern caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) plays its role as the receptor for SARS-CoV-2 through binding with S protein and the binding results in ACE2 expression decrease. The change of ACE2 is supposed to elicit a series of cellular and molecular events. Other than as the receptor, ACE2's roles on infection by regulating other molecules need to be further studied during SARS-CoV-2 infection. In the present study, we established the ACE2 knockdown model using Vero E6 cells to study how ACE2 influenced the downstream signaling molecules. Analysis of transcriptome sequencing discovered that ACE2 alteration per se caused the alteration of immune factors, including some related to the viral infection-related signaling pathways. We found that ACE2 silencing induced the reduced interferon-induced transmembrane protein 3 (IFITM3) expression. Overexpression of IFITM3 promoted the SARS-CoV-2 pseudovirus infection of Vero E6 cells lacking the ACE2. It indicates that ACE2 can affect IFITM3 expression and function to affect the SARS-CoV-2 infection. Our results reveal possible mechanisms influencing SARS-CoV-2 infectivity and contribute to explaining the rapid spread and pathogenesis especially in the case of ACE2 low expression.

4.
Lancet Microbe ; 3(5): e348-e356, 2022 05.
Article in English | MEDLINE | ID: covidwho-1984300

ABSTRACT

Background: The memory immune response is crucial for preventing reinfection or reducing disease severity. However, the robustness and functionality of the humoral and T-cell response to SARS-CoV-2 remains unknown 12 months after initial infection. The aim of this study is to investigate the durability and functionality of the humoral and T-cell response to the original SARS-CoV-2 strain and variants in recovered patients 12 months after infection. Methods: In this longitudinal cohort study, we recruited participants who had recovered from COVID-19 and who were discharged from the Wuhan Research Center for Communicable Disease Diagnosis and Treatment at the Chinese Academy of Medical Sciences, Wuhan, China, between Jan 7 and May 29, 2020. Patients received a follow-up visit between Dec 16, 2020, and Jan 27, 2021. We evaluated the presence of IgM, IgA, and IgG antibodies against the SARS-CoV-2 nucleoprotein, Spike protein, and the receptor-binding domain 12 months after initial infection, using ELISA. Neutralising antibodies against the original SARS-CoV-2 strain, and the D614G, beta (B.1.351), and delta (B.1.617.2) variants were analysed using a microneutralisation assay in a subset of plasma samples. We analysed the magnitude and breadth of the SARS-CoV-2-specific memory T-cell responses using the interferon γ (IFNγ) enzyme-linked immune absorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) assay. The antibody response and T-cell response (ie, IFN-γ, interleukin-2 [IL-2], and tumour necrosis factor α [TNFα]) were analysed by age and disease severity. Antibody titres were also analysed according to sequelae symptoms. Findings: We enrolled 1096 patients, including 289 (26·4%) patients with moderate initial disease, 734 (67·0%) with severe initial disease, and 73 (6·7%) with critical initial disease. Paired plasma samples were collected from 141 patients during the follow-up visits for the microneutralisation assay. PBMCs were collected from 92 of 141 individuals at the 12-month follow-up visit, of which 80 were analysed by ELISpot and 92 by ICS assay to detect the SARS-CoV-2-specific memory T-cell responses. N-IgG (899 [82·0%]), S-IgG (1043 [95·2%]), RBD-IgG (1032 [94·2%]), and neutralising (115 [81·6%] of 141) antibodies were detectable 12 months after initial infection in most individuals. Neutralising antibodies remained stable 6 and 12 months after initial infection in most individuals younger than 60 years. Multifunctional T-cell responses were detected for all SARS-CoV-2 viral proteins tested. There was no difference in the magnitude of T-cell responses or cytokine profiles in individuals with different symptom severity. Moreover, we evaluated both antibody and T-cell responses to the D614G, beta, and delta viral strains. The degree of reduced in-vitro neutralising antibody responses to the D614G and delta variants, but not to the beta variant, was associated with the neutralising antibody titres after SARS-CoV-2 infection. We also found poor neutralising antibody responses to the beta variant; 83 (72·2%) of 115 patients showed no response at all. Moreover, the neutralising antibody titre reduction of the recovered patient plasma against the delta variant was similar to that of the D614G variant and lower than that of the beta variant. By contrast, T-cell responses were cross-reactive to the beta variant in most individuals. Importantly, T-cell responses could be detected in all individuals who had lost the neutralising antibody response to SARS-CoV-2 12 months after the initial infection. Interpretation: SARS-CoV-2-specific neutralising antibody and T-cell responses were retained 12 months after initial infection. Neutralising antibodies to the D614G, beta, and delta viral strains were reduced compared with those for the original strain, and were diminished in general. Memory T-cell responses to the original strain were not disrupted by new variants. This study suggests that cross-reactive SARS-CoV-2-specific T-cell responses could be particularly important in the protection against severe disease caused by variants of concern whereas neutralising antibody responses seem to reduce over time. Funding: Chinese Academy of Medical Sciences, National Natural Science Foundation, and UK Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Cytokines , Humans , Immunoglobulin G , Longitudinal Studies , T-Lymphocytes
5.
J Med Virol ; 94(12): 5746-5757, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1976742

ABSTRACT

We evaluated and compared humoral immune responses after inactivated coronavirus disease 2019 (COVID-19) vaccination among naïve individuals, asymptomatically infected individuals, and recovered patients with varying severity. In this multicenter, prospective cohort study, blood samples from 666 participants were collected before and after 2 doses of inactivated COVID-19 vaccination. Among 392 severe acute respiratory syndrome coronavirus 2-naïve individuals, the seroconversion rate increased significantly from 51.8% (median antispike protein pan-immunoglobulins [S-Igs] titer: 0.8 U/ml) after the first dose to 96% (median S-Igs titer: 79.5 U/ml) after the second dose. Thirty-two percent of naïve individuals had detectable neutralizing antibodies (NAbs) against the original strain but all of them lost neutralizing activity against the Omicron variant. In 274 individuals with natural infection, humoral immunity was significantly improved after a single vaccine dose, with median S-Igs titers of 596.7, 1176, 1086.5, and 1828 U/ml for asymptomatic infections, mild cases, moderate cases, and severe/critical cases, respectively. NAb titers also improved significantly. However, the second dose did not substantially increase antibody levels. Although a booster dose is needed for those without infection, our findings indicate that recovered patients should receive only a single dose of the vaccine, regardless of the clinical severity, until there is sufficient evidence to confirm the benefits of a second dose.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
6.
Chin Med J (Engl) ; 135(10): 1213-1222, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1922353

ABSTRACT

ABSTRACT: The pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to major public health challenges globally. The increasing viral lineages identified indicate that the SARS-CoV-2 genome is evolving at a rapid rate. Viral genomic mutations may cause antigenic drift or shift, which are important ways by which SARS-CoV-2 escapes the human immune system and changes its transmissibility and virulence. Herein, we summarize the functional mutations in SARS-CoV-2 genomes to characterize its adaptive evolution to inform the development of vaccination, treatment as well as control and intervention measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation/genetics , Pandemics , SARS-CoV-2/genetics , Virulence
7.
Emerg Microbes Infect ; 11(1): 1819-1827, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915486

ABSTRACT

The emergence of SARS-CoV-2 Omicron and other variants of concern (VOCs) has brought huge challenges to control the COVID-19 pandemic, calling for urgent development of effective vaccines and therapeutic drugs. In this study, we focused on characterizing the impacts of divergent VOCs on the antiviral activity of lipopeptide-based fusion inhibitors that we previously developed. First, we found that pseudoviruses bearing the S proteins of five VOCs (Alpha, Beta, Gamma, Delta, and Omicron) and one variant of interest (Lambda) exhibited greatly decreased infectivity relative to the wild-type (WT) strain or single D614G mutant, especially the Omicron pseudovirus. Differently, the most of variants exhibited an S protein with significantly enhanced cell fusion activity, whereas the S protein of Omicron still mediated decreased cell-cell fusion. Next, we verified that two lipopeptide-based fusion inhibitors, IPB02V3 and IPB24, maintained the highly potent activities in inhibiting various S proteins-driven cell fusion and pseudovirus infection. Surprisingly, both IPB02V3 and IPB24 lipopeptides displayed greatly increased potencies against the infection of authentic Omicron strain relative to the WT virus. The results suggest that Omicron variant evolves with a reduced cell fusion capacity and is more sensitive to the inhibition of fusion-inhibitory lipopeptides; thus, IPB02V3 and IPB24 can be further developed as potent, broad-spectrum antivirals for combating Omicron and the potential future outbreak of other emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Anti-Retroviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Lipopeptides/pharmacology , Pandemics/prevention & control , SARS-CoV-2/genetics , Virus Internalization
8.
Powder Technol ; 405: 117520, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1851954

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has led to severe social and economic disruption worldwide. Although currently no consent has been reached on a specific therapy that can treat COVID-19 effectively, several inhalation therapy strategies have been proposed to inhibit SARS-CoV-2 infection. These strategies include inhalations of antiviral drugs, anti-inflammatory drugs, and vaccines. To investigate how to enhance the therapeutic effect by increasing the delivery efficiency (DE) of the inhaled aerosolized drug particles, a patient-specific tracheobronchial (TB) tree from the trachea up to generation 6 (G6) with moderate COVID-19 symptoms was selected as a testbed for the in silico trials of targeted drug delivery to the lung regions with pneumonia alba, i.e., the severely affected lung segments (SALS). The 3D TB tree geometry was reconstructed from spiral computed tomography (CT) scanned images. The airflow field and particle trajectories were solved using a computational fluid dynamics (CFD) based Euler-Lagrange model at an inhalation flow rate of 15 L/min. Particle release maps, which record the deposition locations of the released particles, were obtained at the inlet according to the particle trajectories. Simulation results show that particles with different diameters have similar release maps for targeted delivery to SALS. Point-source aerosol release (PSAR) method can significantly enhance the DE into the SALS. A C++ program has been developed to optimize the location of the PSAR tube. The optimized simulations indicate that the PSAR approach can at least increase the DE of the SALS by a factor of 3.2× higher than conventional random-release drug-aerosol inhalation. The presence of the PSAR tube only leads to a 7.12% change in DE of the SALS. This enables the fast design of a patient-specific treatment for reginal lung diseases.

9.
Biosaf Health ; 4(3): 186-192, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821155

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, generating new variants that pose a threat to global health; therefore, it is imperative to obtain safe and broad-spectrum antivirals against SARS-CoV-2 and its variants. To this end, we screened compounds for their ability to inhibit viral entry, which is a critical step in virus infection. Twenty compounds that have been previously reported to inhibit SARS-CoV-2 replication were tested by using pseudoviruses containing the spike protein from the original strain (SARS-CoV-2-WH01). The cytotoxicity of these compounds was determined. Furthermore, we identified six compounds with strong antagonistic activity against the WH01 pseudovirus, and low cytotoxicity was identified. These compounds were then evaluated for their efficacy against pseudoviruses expressing the spike protein from B.1.617.2 (Delta) and B.1.1.529 (Omicron), the two most prevalent circulating strains. These assays demonstrated that two phenothiazine compounds, trifluoperazine 2HCl and thioridazine HCl, inhibit the infection of Delta and Omicron pseudoviruses. Finally, we discovered that these two compounds were highly effective against authentic SARS-CoV-2 viruses, including the WH01, Delta, and Omicron strains. Our study identified potential broad-spectrum SARS-CoV-2 inhibitors and provided insights into the development of novel therapeutics.

11.
Transp Policy (Oxf) ; 120: 11-22, 2022 May.
Article in English | MEDLINE | ID: covidwho-1778472

ABSTRACT

The pandemic COVID-19 which has spread over the world in early 2020 has caused significant impacts not only on health and life, but also on production activities and freight work. However, few studies were about the effect of COVID-19 on the performance of cities' logistics. Hence, this study focuses on the Belt and Road Initiative (BRI) and compares the changes in logistics performance from a spatial perspective caused by COVID-19 that are reflected on the highway freight between its 18 node cities in 2019 and 2020 of the same periods for 72 days. This study uses the entropy weight method to reflect the impact that COVID-19 has caused to the logistics level. Based on the modified gravity model, the impact on the logistics spatial connection between node cities was analyzed. These two aspects have been combined to analyze the logistics performance. The results show that the node cities have been affected by COVID-19 dissimilarly, and the impact has regional characteristics. The logistics level and spatial connection of Wuhan are the most seriously declined. The decline in logistics level has the same spatial variation law as the confirmed cases. The logistics connection between Wuhan and the surrounding node cities and the three-node cities in the northeast of China are also severely affected by the pandemic because of the expressway control policies. The regional distribution of logistics performance has differences, and the correlation of the logistics level and logistics spatial connection decreases. Besides, this study puts forward different recovery suggestions and policies for different belts in the BRI, such as focusing on restoring areas and giving full play to the role of the Chengdu-Chongqing urban agglomeration and logistics corridor. Finally, further provides corresponding suggestions for reducing the impact of emergencies from the perspectives of logistics hubs.

12.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Article in English | MEDLINE | ID: covidwho-1767964

ABSTRACT

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , RNA, Circular/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines
13.
Sci Signal ; 15(715): eabh0068, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1741564

ABSTRACT

The transcription regulator ID2 plays an essential role in the development and differentiation of immune cells. Here, we report that ID2 also negatively regulates antiviral innate immune responses. During viral infection of human epithelial cells, ID2 bound to TANK-binding kinase 1 (TBK1) and to inhibitor of nuclear factor κB kinase ε (IKKε). These interactions inhibited the recruitment and activation of interferon (IFN) regulatory factor 3 (IRF3) by TBK1 or IKKε, leading to a reduction in the expression of IFN-ß1 (IFNB1). IFN-ß induced the nuclear export of ID2 to form a negative feedback loop. Knocking out ID2 in human cells enhanced innate immune responses and suppressed infection by different viruses, including SARS-CoV-2. Mice with a myeloid-specific deficiency of ID2 produced more IFN-α in response to viral infection and were more resistant to viral infection than wild-type mice. Our findings not only establish ID2 as a modulator of IRF3 activation induced by TBK1 and/or IKKε but also introduce a mechanism for cross-talk between innate immunity and cell development and differentiation.


Subject(s)
COVID-19 , I-kappa B Kinase , Animals , Antiviral Agents , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunity, Innate , Inhibitor of Differentiation Protein 2 , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Mice , Phosphorylation , SARS-CoV-2
14.
Biosaf Health ; 4(2): 66-69, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1734223

ABSTRACT

Upper respiratory tract samples are the most commonly used samples for coronavirus disease 2019 (COVID-19) diagnosis. The samples collected from the nasopharynx are preferred for viral nucleic acids detection. Commercial nasopharyngeal swabs (NPSs) are the major factor that influences the sampling quality. We here evaluated the acceptability and efficiency of NPSs from five manufacturers by examining the concentration of glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) retrieved from the swabs using the RT-PCR method. Significant different concentrations of GAPDH were detected, ranged from 4.36 × 108 copies/mL to 6.98 × 1010 copies/mL among the five swabs (p < 0.05). The designation of the swab head, with or without tip expansion, had limited influence on the collection efficiency. The discrepancy among the NPSs emphasized the improvement of the swab head material.

15.
Chin Med J (Engl) ; 133(9): 1015-1024, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-1722617

ABSTRACT

BACKGROUND: Human infections with zoonotic coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV, have raised great public health concern globally. Here, we report a novel bat-origin CoV causing severe and fatal pneumonia in humans. METHODS: We collected clinical data and bronchoalveolar lavage (BAL) specimens from five patients with severe pneumonia from Wuhan Jinyintan Hospital, Hubei province, China. Nucleic acids of the BAL were extracted and subjected to next-generation sequencing. Virus isolation was carried out, and maximum-likelihood phylogenetic trees were constructed. RESULTS: Five patients hospitalized from December 18 to December 29, 2019 presented with fever, cough, and dyspnea accompanied by complications of acute respiratory distress syndrome. Chest radiography revealed diffuse opacities and consolidation. One of these patients died. Sequence results revealed the presence of a previously unknown ß-CoV strain in all five patients, with 99.8% to 99.9% nucleotide identities among the isolates. These isolates showed 79.0% nucleotide identity with the sequence of SARS-CoV (GenBank NC_004718) and 51.8% identity with the sequence of MERS-CoV (GenBank NC_019843). The virus is phylogenetically closest to a bat SARS-like CoV (SL-ZC45, GenBank MG772933) with 87.6% to 87.7% nucleotide identity, but is in a separate clade. Moreover, these viruses have a single intact open reading frame gene 8, as a further indicator of bat-origin CoVs. However, the amino acid sequence of the tentative receptor-binding domain resembles that of SARS-CoV, indicating that these viruses might use the same receptor. CONCLUSION: A novel bat-borne CoV was identified that is associated with severe and fatal respiratory disease in humans.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Pneumonia, Viral/virology , Adult , Aged , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/therapy , SARS-CoV-2 , Tomography, X-Ray , Treatment Outcome
16.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-324186

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 have been thought to originate from bat, but whether the cross-species transmission occurred directly from bat to human or through an intermediate host remains elusive. In this study, we performed CoV screening of 102 samples collected from animal-selling stalls of Wuhan Huanan Market (WHM) and pharyngeal and anal swabs from13,064 bats collected at 703 locations across China, covering almost all known southern hotspots for sarbecovirus, between 2016 and 2021. This is the first systematic survey of bat CoV in China during the outbreak of Corona Virus Disease 2019. We found four non-sarbeco CoVs in samples of WHM, and 142 SARS-CoV related CoVs (SARSr-CoV) and 4 recombinant CoVs in bats, of which YN2020B-G share the highest sequence identity with SARS-CoV among all known bat CoVs, suggesting endemic SARSr-CoVs in bats in China. However, we did not find any SARS-CoV-2 related CoVs (SC2r-CoV) in any samples, including specimens collected from the only two domestic places where RaTG13 and RmYN02 were previously reported (the Tongguan caves and the karst caves around the Xishuangbanna Tropical Botanical Garden), indicating that SC2r-CoVs might not actively circulate among bats in China. Phylogenetic analysis showed that there are three different lineages of sarbecoviruses, L1 (SARSr-CoV), L2 (SC2r-CoV), and L-R (a novel CoV lineage from L1 and L2 recombination), in China. Of note, L-R CoVs are only found in R. pusillus. Further macroscopical analysis of the genetic diversity, host specificity for colonization and accidental infection, and geographical characteristics of available CoVs in database revealed the presence of a general geographical distribution pattern for bat sarbecoviruses, with the highest genetic diversity and sequence homology to SARS-CoV or SARS-CoV-2 along the southwest border of China, the least in the northwest of China. Considering the receptor binding motifs for spike gene of sarbecoviruses in Indochina Peninsula show the greatest diversity, our data provide the rationale that extensive surveys in further south and southwest to or of China might be needed for finding closer ancestors of SARS-CoV and SARS-CoV-2.

17.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319974

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has caused global pandemic. Here we profiled the humoral response against SARS-CoV-2 by measuring immunoglobulin (Ig) A, IgM and IgG against nucleocapsid, spike proteins and IgM, IgG antibodies against receptor-binding domain (RBD) of the spike protein along with total neutralizing antibodies. We tested 279 plasma samples collected from 176 COVID-19 patients. We demonstrate more severe cases have a late onset in the humoral response compared to mild/moderate infections. All the antibody titers continue to rise in patients with COVID-19 over the disease course. However, these levels are mostly unrelated to the disease severity. The appearance time and titers of neutralizing antibodies showed significant positive correlation to the antibodies against spike protein. Our results suggest late onset of antibody response as a risk factor for disease severity, however there is a limited role of antibody titers in predicting disease severity of COVID-19.

18.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319973

ABSTRACT

Background: The pandemic of Coronavirus disease 2019 (COVID-19) is ongoing globally, which is a big challenge for public health. Alteration of human microbiota had been observed in COVID-19. However, it is unknown how the microbiota is associated with the fatality in COVID-19.Methods: We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 COVID-19 patients recruited in the LOTUS clinical trial (Registration number: ChiCTR2000029308) (including 39 deceased patients), and 95 healthy controls from the same geographic area.Findings: The upper respiratory tract (URT) microbiota in COVID-19 patients differed from that in healthy controls, while deceased patients possessed a more distinct microbiota. Streptococcus was enriched in recovered patients, whereas potential pathogens, including Candida and Enterococcus, were more abundant in deceased patients. Moreover, the microbiota dominated by Streptococcus was more stable than that dominated by other species. In contrast, the URT microbiota in deceased patients showed a more significant alteration and became more deviated from the norm after admission. The abundance of Streptococcus on admission, particularly that of S. parasanguis, was identified as a strong predictor of fatality by Cox and L1 regularized logistic regression analysis, thus could be used as a potential prognostic biomarker of COVID-19.Interpretation Alteration of the URT microbiota was observed in COVID-19 patients and was associated with the fatality rate. A higher abundance of Streptococcus, especially S. parasanguis, on admission in oropharyngeal swabs predicts a better outcome. The generalization of the results in other populations and underlying mechanisms need further investigations.Trial Registration: Participants were enrolled in ChiCTR2000029308.Funding: This study was funded in part by the National Major Science & Technology Project for Control and Prevention of Major Infectious Diseases in China (2017ZX10103004, 2018ZX10301401), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2019-I2M-2-XX, 2016-I2M-1-014, 2018-I2M-1-003), The Non-profit Central Research Institute Fund of CAMS (2020HY320001, 2019PT310029), Beijing Advanced Innovation Center for Genomics (ICG), and Beijing Advanced Innovation Center for Structural Biology (ICSB).Declaration of Interests: All authors declare no competing interests.Ethics Approval Statement: The study was approved by the Institutional Review Board of Jin Yin-Tan Hospital (KY2020-02.01). Written informed consent was obtained from all patients or their legal representatives if they were too unwell to provide consent.

19.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-318459

ABSTRACT

Since beginning of this century, there have already been three zoonotic outbreaks caused by beta coronaviruses (CoV), SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly identified 2019-nCoV in late 2019, Wuhan, China. As to Feb 10 th , 2020, there are over 40,000 confirmed cases and over 900 deaths. However, little is known about the biology of this newly emerged virus. Here we developed a lentiviral based pseudovirus system for S protein of 2019-nCoV to study virus entry in BSL2 settings. First, we confirmed that human angiotensin converting enzyme 2 (hACE2) is the main entry receptor for 2019-nCoV. Second, we found that 2019-nCoV S protein mediated entry on 293/hACE2 cells was mainly through endocytosis, and PIKfyve, TPC2, and cathepsin L are critical for virus entry. Third, 2019-nCoV S protein is less stable than SARS-CoV, and it could trigger protease-independent and receptor dependent cell-cell fusion, which might help virus rapidly spread from cell to cell. Finally and more importantly, polyclonal anti-SARS S1 antibodies T62 effectively inhibited entry of SARS-CoV S pseudovirions, but almost had no effect on entry of 2019-nCoV S pseudovirions. Further studies using sera from one recovered SARS-CoV patient and five 2019-nCoV patients showed that there was only limited cross-neutralization activities between SARS-CoV and 2019-nCoV sera, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for 2019-nCoV.

20.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-316327

ABSTRACT

The emergence of novel SARS-CoV-2 virus in China in December 2019 has turned into a global pandemic through continued spread beyond borders. This review was aimed to extract up-to-date information on the evolution, transmission, clinical manifestations, diagnosis, treatment and prevention of COVID-19 to fight against this common enemy. PubMed, Scopus and Google Scholar were the sources of literature;whereas CDC, WHO and Worldometer provided updated information. Bats served as the reservoirs of this virus while pangolin is believed as an intermediate host to transmit the virus to humans. Direct human-to-human and indirect transmissions were involved. Major clinical manifestations included fever, cough, fatigue, sputum production and shortness of breath. Chest radiographs mostly showed bilateral ground-glass opacities. Aged patients and patients with comorbidities had higher case fatality ratios. Critical cases were vulnerable to develop pneumonia, multi-organ failure and deaths. Overall situation in China has improved substantially. The European region and region of the Americas were the worst hit out of six WHO global regions. PCR based methods are used for the diagnosis of COVID-19. Severe/critical cases essentially require supportive or intensive cares. Avoiding exposure to COVID-19 is the best way to prevent the disease. Thus, this review provides a snapshot on COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL