Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
2.
International Journal of Biological Macromolecules ; 230:123191, 2023.
Article in English | ScienceDirect | ID: covidwho-2179329

ABSTRACT

Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5′UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.

3.
World J Oncol ; 13(4): 172-184, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2204001

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a global pandemic. Breast cancer is the most commonly diagnosed malignant cancer in China. Considering the specific national conditions, no evidence is available for factors associated with COVID-19 vaccination in patients with breast cancer. Methods: This was a cross-sectional survey, fielded from June 21 through June 27, 2021. A total of 944 nationally representative samples of Chinese breast cancer patients participating in the survey were included. Participant surveys included questions addressing who finished COVID-19 vaccination with the question "Have you taken the COVID-19 vaccine?", and response options were "Yes" and "No". Results: Overall, 730 (77.33%) women with breast cancer were unvaccinated, and only 214 (22.67%) were vaccinated with the COVID-19 vaccine. After adjusting for potential confounders, including both sociodemographic and clinical characteristics, we found that external support, including positive doctor suggestions (odds ratio (OR): 5.52; 95% confidence interval (CI): 3.50 - 8.71; P < 0.0001), positive support from surrounding people (OR: 11.65; 95% CI: 7.57 - 17.91; P < 0.0001), and negative initiative from the community (OR: 0.15; 95% CI: 0.06 - 0.35; P < 0.0001), was associated with COVID-19 vaccination rates among breast cancer patients. These results remain stable in subgroup analyses. We found that most participants (82.52%) understood the necessity of COVID-19 vaccinations in China was strong; however, the recognition regarding the COVID-19 vaccine showed different patterns between vaccinated and unvaccinated participants. Conclusions: Our findings suggest external support, including vaccination suggestions from surgeons or oncologists, vaccination suggestions from associated people, and residents' committee mandated vaccinations, was associated with the COVID-19 vaccination rates. Interventions regarding these factors and improving publicity as well as education regarding COVID-19 vaccines among breast cancer patients are warranted.

4.
Virol Sin ; 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2184339

ABSTRACT

COVID-19 has spread surprisingly fast worldwide, and new variants continue to emerge. Recently, the World Health Organization acknowledged a new mutant strain "Omicron", with children were accounting for a growing share of COVID-19 cases compared with other mutant strains. However, the clinical and immunological characteristics of convalescent pediatric patients after Omicron infection were lacking. In this study, we comparatively analyzed the clinical data from pediatric patients with adult patients or healthy children and the effects of SARS-CoV-2 vaccine on the clinical and immune characteristics in convalescent pediatric patients. Our results indicated that convalescent pediatric patients had unique clinical and immune characteristics different from those of adult patients or healthy children, and SARS-CoV-2 vaccination significantly affected on the clinical and immune characteristics and the prevention of nucleic acid re-detectable positive (RP) in convalescent patients. Our study further deepens the understanding of the impact of Omicron on the long-term health of pediatric patients and provides a valuable reference for the prevention and treatment of children infected with Omicron.

5.
Biomolecules ; 13(1):6, 2023.
Article in English | MDPI | ID: covidwho-2166225

ABSTRACT

This study was conducted to investigate oropharyngeal microbiota alterations during the progression of coronavirus disease 2019 (COVID-19) by analyzing these alterations during the infection and clearance processes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The diagnosis of COVID-19 was confirmed by using positive SARS-CoV-2 quantitative reverse transcription polymerase chain reaction (RT-qPCR). The alterations in abundance, diversity, and potential function of the oropharyngeal microbiome were identified using metatranscriptomic sequencing analyses of oropharyngeal swab specimens from 47 patients with COVID-19 (within a week after diagnosis and within two months after recovery from COVID-19) and 40 healthy individuals. As a result, in the infection process of SARS-CoV-2, compared to the healthy individuals, the relative abundances of Prevotella, Aspergillus, and Epstein-Barr virus were elevated;the alpha diversity was decreased;the beta diversity was disordered;the relative abundance of Gram-negative bacteria was increased;and the relative abundance of Gram-positive bacteria was decreased. After the clearance of SARS-CoV-2, compared to the healthy individuals and patients with COVID-19, the above disordered alterations persisted in the patients who had recovered from COVID-19 and did not return to the normal level observed in the healthy individuals. Additionally, the expressions of several antibiotic resistance genes (especially multi-drug resistance, glycopeptide, and tetracycline) in the patients with COVID-19 were higher than those in the healthy individuals. After SARS-CoV-2 was cleared, the expressions of these genes in the patients who had recovered from COVID-19 were lower than those in the patients with COVID-19, and they were different from those in the healthy individuals. In conclusion, our findings provide evidence that potential secondary infections with oropharyngeal bacteria, fungi, and viruses in patients who have recovered from COVID-19 should not be ignored;this evidence also highlights the clinical significance of the oropharyngeal microbiome in the early prevention of potential secondary infections of COVID-19 and suggests that it is imperative to choose appropriate antibiotics for subsequent bacterial secondary infection in patients with COVID-19.

6.
Molecular & Cellular Proteomics ; : 100493, 2023.
Article in English | ScienceDirect | ID: covidwho-2165691

ABSTRACT

Serum antibodies IgM and IgG are elevated during COVID-19 to defend against viral attacks. Atypical results such as negative and abnormally high antibody expression were frequently observed whereas the underlying molecular mechanisms are elusive. In our cohort of 144 COVID-19 patients, 3.5% were both IgM and IgG negative whereas 29.2% remained only IgM negative. The remaining patients exhibited positive IgM and IgG expression, with 9.3% of them exhibiting over 20-fold higher titers of IgM than the others at their plateau. IgG titers in all of them were significantly boosted after vaccination in the second year. To investigate the underlying molecular mechanisms, we classed the patients into four groups with diverse serological patterns and analyzed their two-year clinical indicators. Additionally, we collected 111 serum samples for TMTpro-based longitudinal proteomic profiling and characterized 1494 proteins in total. We found that the continuously negative IgM and IgG expression during COVID-19 were associated with mild inflammatory reactions and high T cell responses. Low levels of serum IgD, inferior complement 1 activation of complement cascades, and insufficient cellular immune responses might collectively lead to compensatory serological responses, causing overexpression of IgM. Serum CD163 was positively correlated with antibody titers during seroconversion. This study suggests that patients with negative serology still developed cellular immunity for viral defense, and that high titers of IgM might not be favorable to COVID-19 recovery.

7.
Biomedicine & Pharmacotherapy ; 158:114213, 2023.
Article in English | ScienceDirect | ID: covidwho-2165109

ABSTRACT

The rapid emergence of highly transmissible SARS-CoV-2 variants poses serious threat to the efficacy of vaccines and neutralizing antibodies. Thus, there is an urgent need to develop new and effective inhibitors against SARS-CoV-2 and future outbreaks. Here, we have identified a series of glycopeptide antibiotics teicoplanin derivatives that bind to the SARS-CoV-2 spike (S) protein, interrupt its interaction with ACE2 receptor and selectively inhibit viral entry mediated by S protein. Computation modeling predicts that these compounds interact with the residues in the receptor binding domain. More importantly, these teicoplanin derivatives inhibit the entry of both pseudotyped SARS-CoV-2 Delta and Omicron variants. Our study demonstrates the feasibility of developing small molecule entry inhibitors by targeting the interaction of viral S protein and ACE2. Together, considering the proven safety and pharmacokinetics of teicoplanin as a glycopeptide antibiotic, the teicoplanin derivatives hold great promise of being repurposed as pan-SARS-CoV-2 inhibitors.

8.
Antiviral Research ; 209:105507, 2023.
Article in English | ScienceDirect | ID: covidwho-2165062

ABSTRACT

The Omicron variant is sweeping the world, which displays striking immune escape potential through mutations at key antigenic sites on the spike protein, making broad-spectrum SARS-CoV-2 prevention or therapeutical strategies urgently needed. Previously, we have reported a hACE2-targeting neutralizing antibody 3E8, which could efficiently block both prototype SARS-CoV-2 and Delta variant infections in prophylactic mouse models, having the potential of broad-spectrum to prevent SARS-CoV-2. However, preparation of monoclonal neutralizing antibodies is severely limited by the time-consuming process and the relative high cost. Here, we utilized a modified VEEV replicon with two subgenomic (sg) promoters engineered to express the light and heavy chains of the 3E8 mAb. The feasibility and protective efficacy of replicating mRNA encoding 3E8 against Omicron infection in the hamster were demonstrated through the lung targeting delivery with the help of VEEV-VRP. Overall, we developed a safe and cost-effective platform of broad-spectrum to prevent SARS-CoV-2 infection.

9.
Arabian Journal of Chemistry ; : 104519, 2022.
Article in English | ScienceDirect | ID: covidwho-2158451

ABSTRACT

Xuebijing (XBJ) Injection is a reputable patent Chinese medicine widely used to cure sepsis, among the Chinese ″Three Medicines and Three Prescriptions″ solution to fight against COVID-19. We were aimed to achieve the comprehensive multicomponent characterization from the single drugs to traditional Chinese medicine (TCM) formula, by integrating powerful data acquisition and the in-house MS2 spectral database searching. By ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS), a hybrid scan approach (HDMSE-HDDDA) was developed, while the HDMSE data for five component drugs and 56 reference compounds were acquired and processed to establish an in-house MS2 spectral database of XBJ. Good resolution of the XBJ components was accomplished on a Zorbax Eclipse Plus C18 column within 24 min, while a fit-for-purpose HDMSE-HDDDA approach was elaborated in two ionization modes for enhanced MS2 data acquisition. XBJ MS2 spectral library was thus established on the UNIFITM platform involving rich structure-related information for the chemicals from five component drugs. We could identify or tentatively characterize 294 components from XBJ, involving 81 flavonoids, 51 terpenoids, 42 phthalides, 40 organic acids, 13 phenylpropanoids, seven phenanthrenequinones, six alkaloids, and 54 others. In contrast to the application of conventional MS1 library, this newly established strategy could demonstrate superiority in the accuracy of identification results and the characterization of isomers, due to the more restricted filtering/matching criteria. Conclusively, the integration of the HDMSE-HDDDA hybrid scan approach and the in-house MS2 spectral database can favor the efficient and more reliable multicomponent characterization from single drugs to the TCM formula.

10.
International Journal of Molecular Sciences ; 23(24):16011, 2022.
Article in English | MDPI | ID: covidwho-2163442

ABSTRACT

The effective antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed around the world. The 3C-like protease (3CLpro) of SARS-CoV-2 plays a pivotal role in virus replication;it also has become an important therapeutic target for the infection of SARS-CoV-2. In this work, we have identified Darunavir derivatives that inhibit the 3CLpro through a high-throughput screening method based on a fluorescence resonance energy transfer (FRET) assay in vitro. We found that the compounds 29# and 50# containing polyphenol and caffeine derivatives as the P2 ligand, respectively, exhibited favorable anti-3CLpro potency with EC50 values of 6.3 μM and 3.5 μM and were shown to bind to SARS-CoV-2 3CLpro in vitro. Moreover, we analyzed the binding mode of the DRV in the 3CLpro through molecular docking. Importantly, 29# and 50# exhibited a similar activity against the protease in Omicron variants. The inhibitory effect of compounds 29# and 50# on the SARS-CoV-2 3CLpro warrants that they are worth being the template to design functionally improved inhibitors for the treatment of COVID-19.

11.
Cell Reports ; : 111845, 2022.
Article in English | ScienceDirect | ID: covidwho-2130308

ABSTRACT

Summary SARS-CoV-2 Omicron sublineages have escaped most RBD-targeting therapeutic neutralizing antibodies (NAbs), which proves the previous NAb drug screening strategies deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following the criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS-CoV-2-vaccinated SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection, especially for individuals who are immunocompromised or with high-risk comorbidities.

12.
Chinese Journal of Virology ; 38(1):33-40, 2022.
Article in Chinese | GIM | ID: covidwho-2115925

ABSTRACT

The study describing the process of discovery and source tracing of a native case of coronavirus disease 2019 (COVID-19) infection on Jan 2021, in Guangxi, China, to provide methodology for source investigation better in the future. Following the Epidemiological Investigation Plan for COVID-19 (version 7), information of the native COVID-19 case and related close contacts were collected. Real time reverse transcription-quantitative polymerase chain reaction was performed to detect the nucleic acids of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in samples collected from the infection case, related close contacts, and the environment, combined with serum specific antibody detection. The positive nucleic acid samples were undergone whole genome sequencing, phylogenetic analysis and analyses of variation of amino acids. The whole genome sequence from the native case and the imported asymptomatic infected case from Indonesia containing 25 nucleotide mutation sites belong to L-Lineage European Branch II. 3. The imported asymptomatic case was the source of infection of this native case. The possible route of infection was that native case was exposed to contaminated environment by imported case, due to improper personal protective equipment. A focus on local outbreaks of COVID-19 caused by SARS-CoV-2-infected people from outside China is needed.

13.
Risk Manag Healthc Policy ; 15: 2097-2113, 2022.
Article in English | MEDLINE | ID: covidwho-2115465

ABSTRACT

Background: Risk perception is a key factor influencing the public's behavioral response to major public health events. The research on public risk perception promotes the emergency management system to adapt to the needs of modern development. This article is based on a risk information perspective, using the COVID-19 event as an example. From the micro and macro perspectives, the influencing factors of public risk perception in major public health events in China are extracted, and the attribution model and index system of public risk perception are established. Methods: In this paper, the five-level Likert scale is used to collect and measure the risk perception variable questionnaire through the combination of online and offline methods (a total of 550 questionnaires, the overall Alpha coefficient of the questionnaire is 0.955, and the KMO test coefficient t=0.941), and through independent samples t-test, correlation analysis, multiple regression analysis and other methods to draw relevant conclusions. Results: The results showed that gender and age were significantly associated with risk perception (p<0.005), and education level was significantly negatively associated with risk perception (p <0 0.005). Risk information attention and risk perception were significantly positively correlated (p<0.005), media credibility was significantly positively correlated with risk perception (p<0.005), while risk information identification and media exposure had no significant interaction with risk perception (p=0.125, p=0.352). Conclusion: Factors such as gender, age, education level, place of residence, media exposure, media credibility, risk information attention, and recognition lead to different levels of risk perception. This conclusion helps to provide a basis for relevant departments to conduct public risk management of major public health events based on differences in risk perceptions.

14.
Phytother Res ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119295

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a global epidemic, and there is no specific treatment for anti-COVID-19 drugs. However, treatment of COVID-19 using Chinese herbal medicine (CHM) has been widely practiced in China. PubMed, Embase, Cochrane Library, CNKI, Wanfang and VIP databases were searched to evaluate the efficacy and safety of CHM in the treatment of COVID-19. Twenty-six studies were included in this meta-analysis. The included cases were all patients diagnosed with COVID-19 according to the "New Coronary Virus Pneumonia Diagnosis and Treatment Program," with a total of 2,407 cases. Patients were treated with CHM, including 36 prescriptions, and 105 flavors of CHM were included. The results of the meta-analysis showed that the CHM group improved in lung CT, clinical cure rate, clinical symptom score and time to negative for viral nucleic acid. However, this study still has many limitations due to the limited number of included studies. Therefore, high-quality RCT studies are needed to provide more reliable evidence for CHM treatment of COVID-19. In conclusion, CHM may significantly improve the clinical manifestations and laboratory indicators of patients with COVID-19. In addition, no serious adverse reactions were found after CHM treatment. Therefore, CHM may be used as a potential candidate for COVID-19. HIGHLIGHTS: COVID-19 has become a global epidemic, and there is no specific treatment for anti-COVID-19 drugs. CHM has made a new breakthrough in the treatment of COVID-19. CHM may relieve lung CT images of COVID-19 patients. CHM may improve clinical symptoms of COVID-19 patients. CHM may inhibit the expression of inflammatory factors in patients with COVID-19.

15.
J Med Virol ; : e28293, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2116917

ABSTRACT

To evaluate the chest computed tomography (CT) findings of patients with Corona Virus Disease 2019 (COVID-19) on admission to hospital. And then correlate CT pulmonary infiltrates involvement with the findings of emphysema. We analyzed the different infiltrates of COVID-19 pneumonia using emphysema as the grade of pneumonia. We applied open-source assisted software (3D Slicer) to model the lungs and lesions of 66 patients with COVID-19, which were retrospectively included. we divided the 66 COVID-19 patients into the following two groups: (A) 12 patients with less than 10% emphysema in the low-attenuation area less than -950 Hounsfield units (%LAA-950), (B) 54 patients with greater than or equal to 10% emphysema in %LAA-950. Imaging findings were assessed retrospectively by two authors and then pulmonary infiltrates and emphysema volumes were measured on CT using 3D Slicer software. Differences between pulmonary infiltrates, emphysema, Collapsed, affected of patients with CT findings were assessed by Kruskal-Wallis and Wilcoxon test, respectively. Statistical significance was set at p < 0.05. The left lung (A) affected left lung 20.00/affected right lung 18.50, (B) affected left lung 13.00/affected right lung 11.50 was most frequently involved region in COVID-19. In addition, collapsed left lung, (A) collapsed left lung 4.95/collapsed right lung 4.65, (B) collapsed left lung 3.65/collapsed right lung 3.15 was also more severe than the right one. There were significant differences between the Group A and Group B in terms of the percentage of CT involvement in each lung region (p < 0.05), except for the inflated affected total lung (p = 0.152). The median percentage of collapsed left lung in the Group A was 20.00 (14.00-30.00), right lung was 18.50 (13.00-30.25) and the total was 19.00 (13.00-30.00), while the median percentage of collapsed left lung in the Group B was 13.00 (10.00-14.75), right lung was 11.50 (10.00-15.00) and the total was 12.50 (10.00-15.00). The percentage of affected left lung is an independent predictor of emphysema in COVID-19 patients. We need to focus on the left lung of the patient as it is more affected. The people with lower levels of emphysema may have more collapsed segments. The more collapsed segments may lead to more serious clinical feature.

16.
Ocean & Coastal Management ; 231:106414, 2023.
Article in English | ScienceDirect | ID: covidwho-2105671

ABSTRACT

Driven by globalization, the COVID-19 outbreak has severely impacted global transport and logistics systems. To better cope with this globalization crisis, the Belt and Road Initiative (BRI)—based on the concept of cooperation—is more important than ever in the post-pandemic era. Taking the BRI as the background, we design an intermodal hub-and-spoke network to provide reference for governments along BRI routes to improve their cross-border transportation system and promote economic recovery. In the context of the BRI, local governments at different nodes have incentives to subsidize hub construction and/or rail transportation to boost economic development. We consider co-opetition behavior among different levels of government caused by subsidies in this intermodal hub location problem, which we call the intermodal hub location problem based on government subsidies. We establish a two-stage mixed-integer programming model. In the first stage, local governments provide subsidies, then the central government decides the number and location of hubs. In the second stage, freight carriers choose the optimal route to transport the goods. To solve the model, we design an optimization method combining a population-based algorithm using contest theory. The results show that rail subsidies are positively correlated with construction subsidies but are not necessarily related to the choice of hubs. Compared with monomodal transportation, intermodal transportation can reduce costs more effectively when there are not too many hubs and the cost of different modes of transportation varies greatly. The influences of local government competition and hub construction investment on network design and government subsidies are further examined.

17.
Cell Host Microbe ; 30(11): 1527-1539.e5, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2104544

ABSTRACT

Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a growth advantage over circulating BA.2.38, BA.2.76, and BA.5 in India. However, the underlying mechanisms for enhanced infectivity, especially compared with BA.5, remain unclear. Here, we show that BA.2.75 exhibits substantially higher affinity for host receptor angiotensin-converting enzyme 2 (ACE2) than BA.5 and other variants. Structural analyses of BA.2.75 spike shows its decreased thermostability and increased frequency of the receptor binding domain (RBD) in the "up" conformation under acidic conditions, suggesting enhanced low-pH-endosomal cell entry. Relative to BA.4/BA.5, BA.2.75 exhibits reduced evasion of humoral immunity from BA.1/BA.2 breakthrough-infection convalescent plasma but greater evasion of Delta breakthrough-infection convalescent plasma. BA.5 breakthrough-infection plasma also exhibits weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75's distinct neutralizing antibody (NAb) escape pattern. Antibody therapeutics Evusheld and Bebtelovimab remain effective against BA.2.75. These results suggest BA.2.75 may prevail after BA.4/BA.5, and its increased receptor-binding capability could support further immune-evasive mutations.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
18.
Front Med (Lausanne) ; 9: 928637, 2022.
Article in English | MEDLINE | ID: covidwho-2099168

ABSTRACT

Background: SARS-CoV-2 causes coronavirus disease 2019 (COVID-19), a new coronavirus pneumonia, and containing such an international pandemic catastrophe remains exceedingly difficult. Asthma is a severe chronic inflammatory airway disease that is becoming more common around the world. However, the link between asthma and COVID-19 remains unknown. Through bioinformatics analysis, this study attempted to understand the molecular pathways and discover potential medicines for treating COVID-19 and asthma. Methods: To investigate the relationship between SARS-CoV-2 and asthma patients, a transcriptome analysis was used to discover shared pathways and molecular signatures in asthma and COVID-19. Here, two RNA-seq data (GSE147507 and GSE74986) from the Gene Expression Omnibus were used to detect differentially expressed genes (DEGs) in asthma and COVID-19 patients to find the shared pathways and the potential drug candidates. Results: There were 66 DEGs in all that were classified as common DEGs. Using a protein-protein interaction (PPI) network created using various bioinformatics techniques, five hub genes were found. We found that asthma has some shared links with the progression of COVID-19. Additionally, protein-drug interactions with common DEGs were also identified in the datasets. Conclusion: We investigated possible links between COVID-19 and asthma using bioinformatics databases, which might be useful in treating COVID-19 patients. More studies on populations affected by these diseases are needed to elucidate the molecular mechanism behind their association.

19.
Microbiol Spectr ; : e0127022, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2097932

ABSTRACT

The emergence of a new type of COVID-19 patients, who were retested positive after hospital discharge with long-term persistent SARS-CoV-2 infection but without COVID-19 clinical symptoms (hereinafter, LTPPs), poses novel challenges to COVID-19 treatment and prevention. Why was there such a contradictory phenomenon in LTPPs? To explore the mechanism underlying this phenomenon, we performed quantitative proteomic analyses using the sera of 12 LTPPs (Wuhan Pulmonary Hospital), with the longest carrying history of 132 days, and mainly focused on 7 LTPPs without hypertension (LTPPs-NH). The results showed differential serum protein profiles between LTPPs/LTPPs-NH and health controls. Further analysis identified 174 differentially-expressed-proteins (DEPs) for LTPPs, and 165 DEPs for LTPPs-NH, most of which were shared. GO and KEGG analyses for these DEPs revealed significant enrichment of "coagulation" and "immune response" in both LTPPs and LTPPs-NH. A unity of contradictory genotypes in the 2 aspects were then observed: some DEPs showed the same dysregulated expressed trend as that previously reported for patients in the acute phase of COVID-19, which might be caused by long-term stimulation of persistent SARS-CoV-2 infection in LTPPs, further preventing them from complete elimination; in contrast, some DEPs showed the opposite expression trend in expression, so as to retain control of COVID-19 clinical symptoms in LTPPs. Overall, the contrary effects of these DEPs worked together to maintain the balance of LTPPs, further endowing their contradictory steady-state with long-term persistent SARS-CoV-2 infection but without symptoms. Additionally, our study revealed some potential therapeutic targets of COVID-19. Further studies on these are warranted. IMPORTANCE This study reported a new type of COVID-19 patients and explored the underlying molecular mechanism by quantitative proteomic analyses. DEPs were significantly enriched in "coagulation" and "immune response". Importantly, we identified 7 "coagulation system"- and 9 "immune response"-related DEPs, the expression levels of which were consistent with those previously reported for patients in the acute phase of COVID-19, which appeared to play a role in avoiding the complete elimination of SARS-CoV-2 in LTPPs. On the contrary, 6 "coagulation system"- and 5 "immune response"-related DEPs showed the opposite trend in expression. The 11 inconsistent serum proteins seem to play a key role in the fight against long-term persistent SARS-CoV-2 infection, further retaining control of COVID-19 clinical symptom of LTPPs. The 26 proteins can serve as potential therapeutic targets and are thus valuable for the treatment of LTPPs; further studies on them are warranted.

20.
Virologica Sinica ; 2022.
Article in English | EuropePMC | ID: covidwho-2093134

ABSTRACT

COVID-19 has spread surprisingly fast worldwide, and new variants continue to emerge. Recently, the World Health Organization acknowledged a new mutant strain "Omicron", with children were accounting for a growing share of COVID-19 cases compared with other mutant strains. However, the clinical and immunological characteristics of convalescent pediatric patients after Omicron infection were lacking. In this study, we comparatively analyzed the clinical data from pediatric patients with adult patients or healthy children and the effects of SARS-CoV-2 vaccine on the clinical and immune characteristics in convalescent pediatric patients. Our results indicated that convalescent pediatric patients had unique clinical and immune characteristics different from those of adult patients or healthy children, and SARS-CoV-2 vaccination significantly affected on the clinical and immune characteristics and the prevention of nucleic acid re-detectable positive (RP) in convalescent patients. Our study further deepens the understanding of the impact of Omicron on the long-term health of pediatric patients and provides a valuable reference for the prevention and treatment of children infected with Omicron.

SELECTION OF CITATIONS
SEARCH DETAIL