Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Pathogens ; 11(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1760794

ABSTRACT

Schistosomiasis japonica caused by the trematode flukes of Schistosoma japonicum was one of the most grievous infectious diseases in China in the mid-20th century, while its elimination has been placed on the agenda of the national strategic plan of healthy China 2030 after 70 years of continuous control campaigns. Diagnostic tools play a pivotal role in warfare against schistosomiasis but must adapt to the endemic status and objectives of activities. With the decrease of prevalence and infection intensity of schistosomiasis in human beings and livestock, optimal methodologies with high sensitivity and absolute specificity are needed for the detection of asymptomatic cases or light infections, as well as disease surveillance to verify elimination. In comparison with the parasitological methods with relatively low sensitivity and serological techniques lacking specificity, which both had been widely used in previous control stages, the molecular detection methods based on the amplification of promising genes of the schistosome genome may pick up the baton to assist the eventual aim of elimination. In this article, we reviewed the developed molecular methods for detecting S. japonicum infection and their application in schistosomiasis japonica diagnosis. Concurrently, we also analyzed the chances and challenges of molecular tools to the field application process in China.

2.
Clin Infect Dis ; 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1758700

ABSTRACT

BACKGROUND: To combat the COVID-19 pandemic, nonpharmaceutical interventions (NPI) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARI). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for eight viral pathogens (influenza virus, IFV; respiratory syncytial virus, RSV; human parainfluenza virus, HPIV; human adenovirus; human metapneumovirus; human coronavirus, HCoV; human bocavirus, HBoV, and human rhinovirus, HRV) between 2012 and 2021, were analyzed to assess the changes of respiratory infections in China during the first COVID-19 pandemic year compared to pre-pandemic years. RESULTS: Test positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17·2% for RSV to -87·6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year round, RSV, HPIV, HCoV, HRV HBov resurged and went beyond historical levels during September, 2020-January, 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children younger than 18 years and in Northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311007

ABSTRACT

Background: Nationwide nonpharmaceutical interventions (NPI) were used to combat the novel coronavirus disease (COVID-19) during 2020 in the mainland of China. These NPIs have proven effective on mitigating the spread of COVID-19, but their broad impact on other diseases remains under-investigated. In this study, we aim to assess whether such broad impact exists on notifiable diseases in China.Methods: Weekly incidence and mortality data for 31 major notifiable infectious diseases at the province level were extracted from the China Information System for Disease Control and Prevention from 2014 to 2020. We assessed the impact of NPIs by contrasting the incidences of each infectious disease in predefined COVID-19 phases during 2020 to the average incidences in the corresponding time intervals during 2014-2019.Findings: We observed decreased incidences of most diseases during the phases after the lockdown of Wuhan. In general, respiratory diseases and gastrointestinal or enteroviral diseases were more affected than sexually transmitted or bloodborne diseases and vector-borne or zoonotic diseases. Seasonal flu and rubella were the most sensitive to the NPIs, with reductions of 67-99% in incidence rates throughout the NPI-implemented phases in China (Jan 27-Dec 31, 2020). Among gastrointestinal or enteroviral diseases, the hand, foot and mouth disease (HFMD) was subject to the largest declines during Jan 27-Aug 31, 2020, with >90% reduction in incidence rate. Phases with more stringent NPIs were associated with more reductions. Non-respiratory diseases, particularly HFMD, gonorrhea and brucellosis, rebounded towards the end of the year as the NPIs were relaxed.Interpretation: NPIs are broadly effective in containing infectious diseases. Less disruptive NPIs such as wearing face masks are still effective in mitigating respiratory diseases but are not adequate for containing non-respiratory diseases.Funding Statement: This work was supported by grants from the National Natural Science Funds [91846302, 81825019], the China Mega-Project on Infectious Disease Prevention [2018ZX10713001, 2018ZX10713002, 2018ZX10201001 and 2017ZX10103004], and the US National Institutes of Health [R56 AI148284].Declaration of Interests: All authors declare no competing interests.Ethics Approval Statement: Missing.

4.
Nat Commun ; 12(1): 6923, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537314

ABSTRACT

Nationwide nonpharmaceutical interventions (NPIs) have been effective at mitigating the spread of the novel coronavirus disease (COVID-19), but their broad impact on other diseases remains under-investigated. Here we report an ecological analysis comparing the incidence of 31 major notifiable infectious diseases in China in 2020 to the average level during 2014-2019, controlling for temporal phases defined by NPI intensity levels. Respiratory diseases and gastrointestinal or enteroviral diseases declined more than sexually transmitted or bloodborne diseases and vector-borne or zoonotic diseases. Early pandemic phases with more stringent NPIs were associated with greater reductions in disease incidence. Non-respiratory diseases, such as hand, foot and mouth disease, rebounded substantially towards the end of the year 2020 as the NPIs were relaxed. Statistical modeling analyses confirm that strong NPIs were associated with a broad mitigation effect on communicable diseases, but resurgence of non-respiratory diseases should be expected when the NPIs, especially restrictions of human movement and gathering, become less stringent.


Subject(s)
Communicable Diseases/epidemiology , Disease Notification/statistics & numerical data , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , China/epidemiology , Communicable Disease Control , Communicable Diseases/classification , Communicable Diseases/transmission , Humans , Incidence , Models, Statistical , SARS-CoV-2
5.
Transbound Emerg Dis ; 68(6): 3288-3304, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526422

ABSTRACT

Since first identified in December of 2019, COVID-19 has been quickly spreading to the world in few months and COVID-19 cases are still undergoing rapid surge in most countries worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), adapts and evolves rapidly in nature. With the availability of 16,092 SARS-CoV-2 full genomes in GISAID as of 13 May, we removed the poor-quality genomes and performed mutational profiling analysis for the remaining 11,183 viral genomes. Global analysis of all sequences identified all single nucleotide polymorphisms (SNPs) across the whole genome and critical SNPs with high mutation frequency that contributes to five-clade classification of global strains. A total of 119 SNPs were found with 74 non-synonymous mutations, 43 synonymous mutations and two mutations in intergenic regions. Analysis of geographic pattern of mutational profiling for the whole genome reveals differences between each continent. A transition mutation from C to T represents the most mutation types across the genome, suggesting rapid evolution and adaptation of the virus in host. Amino acid (AA) deletions and insertions found across the genome results in changes in viral protein length and potential function alteration. Mutational profiling for each gene was analysed, and results show that nucleocapsid gene demonstrates the highest mutational frequency, followed by Nsp2, Nsp3 and Spike gene. We further focused on non-synonymous mutational distributions on four key viral proteins, spike with 75 mutations, RNA-dependent-RNA-polymerase with 41 mutations, 3C-like protease with 22 mutations and Papain-like protease with 10 mutations. Results show that non-synonymous mutations on critical sites of these four proteins pose great challenge for development of anti-viral drugs and other countering measures. Overall, this study provides more understanding of genetic diversity/variability of SARS-CoV-2 and insights for development of anti-viral therapeutics.


Subject(s)
Genome, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Genetic Variation , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Clin Infect Dis ; 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1522157

ABSTRACT

BACKGROUND: To combat the COVID-19 pandemic, nonpharmaceutical interventions (NPI) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARI). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for eight viral pathogens (influenza virus, IFV; respiratory syncytial virus, RSV; human parainfluenza virus, HPIV; human adenovirus; human metapneumovirus; human coronavirus, HCoV; human bocavirus, HBoV, and human rhinovirus, HRV) between 2012 and 2021, were analyzed to assess the changes of respiratory infections in China during the first COVID-19 pandemic year compared to pre-pandemic years. RESULTS: Test positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17·2% for RSV to -87·6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year round, RSV, HPIV, HCoV, HRV HBov resurged and went beyond historical levels during September, 2020-January, 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children younger than 18 years and in Northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.

7.
Nat Commun ; 12(1): 5026, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1363491

ABSTRACT

Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.


Subject(s)
Bacteria/isolation & purification , Bacterial Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Adolescent , Adult , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Male , Prospective Studies , Respiratory Tract Infections/epidemiology , Seasons , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Young Adult
9.
Lancet Reg Health West Pac ; 16: 100268, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1415636

ABSTRACT

BACKGROUND: Non pharmaceutical interventions (NPI) including hand washing directives were implemented in China and worldwide to combat the COVID-19 pandemic, which are likely to have had impacted a broad spectrum of enteric pathogen infections. METHODS: Etiologically diagnostic data from 45 937 and 67 395 patients with acute diarrhea between 2012 and 2020, who were tested for seven viral pathogens and 13 bacteria respectively, were analyzed to assess the changes of enteric pathogen infections in China during the first COVID-19 pandemic year compared to pre-pandemic years. FINDINGS: Test positive rates of all enteric viruses decreased during 2020, compared to the average levels during 2012-2019, with a relative decrease of 71•75% for adenovirus, 58•76% for norovirus, 53•50% for rotavirus A, and 72•07% for the combination of other four uncommon viruses. In general, a larger reduction of positive rate in viruses was seen among adults than pediatric patients. A rebound of rotavirus A was seen after September 2020 in North China rather than South China. Test positive rates of bacteria decreased during 2020, compared to the average levels during 2012-2019, excepting for nontyphoidal Salmonella and Campylobacter coli with 66•53% and 90•48% increase respectively. This increase was larger for pediatric patients than for adult patients. INTERPRETATION: The activity of enteric pathogens changed profoundly alongside the NPIs implemented during the COVID-19 pandemic in China. Greater reductions of the test positive rates were found for almost all enteric viruses than for bacteria among acute diarrhea patients, with further large differences by age and geography. Lifting of NPIs will lead to resurgence of enteric pathogen infections, particularly in children whose immunity may not have been developed and/or waned. FUNDING: China Mega-Project on Infectious Disease Prevention; National Natural Science Funds.

10.
Clin Infect Dis ; 73(6): e1314-e1320, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1414098

ABSTRACT

BACKGROUND: The relative contributions of asymptomatic, presymptomatic, and symptomatic transmission of severe acute respiratory syndrome coronavirus 2 have not been clearly measured, although control measures may differ in response to the risk of spread posed by different types of cases. METHODS: We collected detailed information on transmission events and symptom status based on laboratory-confirmed patient data and contact tracing data from 4 provinces and 1 municipality in China. We estimated the variation in risk of transmission over time and the severity of secondary infections by symptomatic status of the infector. RESULTS: There were 393 symptomatic index cases with 3136 close contacts and 185 asymptomatic index cases with 1078 close contacts included in the study. The secondary attack rates among close contacts of symptomatic and asymptomatic index cases were 4.1% (128 of 3136) and 1.1% (12 of 1078), respectively, corresponding to a higher transmission risk from symptomatic cases than from asymptomatic cases (odds ratio, 3.79; 95% confidence interval, 2.06-6.95). Approximately 25% (32 of 128) and 50% (6 of 12) of the infected close contacts were asymptomatic from symptomatic and asymptomatic index cases, respectively, while more than one third (38%) of the infections in the close contacts of symptomatic cases were attributable to exposure to the index cases before symptom onset. CONCLUSIONS: Asymptomatic and presymptomatic transmissions play an important role in spreading infection, although asymptomatic cases pose a lower risk of transmission than symptomatic cases. Early case detection and effective test-and-trace measures are important to reduce transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , China/epidemiology , Contact Tracing , Humans , Incidence
11.
Disease Surveillance ; 36(6):573-580, 2021.
Article in Chinese | GIM | ID: covidwho-1395019

ABSTRACT

Objective: To analyze the early clinical characteristics of coronavirus disease 2019 (COVID-19) cases in different age groups, and provide references for the early identification, treatment and management of COVID-19 cases, prevention of the progression of illness and further effective prevention and control of COVID-19.

12.
Clin Infect Dis ; 2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1376289

ABSTRACT

Using detailed exposure information on COVID-19 cases, we estimated the mean latent period to be 5.5 days (95% confidence interval: 5.1-5.9 days), shorter than the mean incubation period (6.9 days). Laboratory testing may allow shorter quarantines since 95% of COVID-19 cases shed virus within 10.6 days (95%CI: 9.6-11.6) of infection.

13.
Emerg Infect Dis ; 27(9): 2288-2293, 2021 09.
Article in English | MEDLINE | ID: covidwho-1369628

ABSTRACT

We estimated the symptomatic, PCR-confirmed secondary attack rate (SAR) for 2,382 close contacts of 476 symptomatic persons with coronavirus disease in Yichang, Hubei Province, China, identified during January 23-February 25, 2020. The SAR among all close contacts was 6.5%; among close contacts who lived with an index case-patient, the SAR was 10.8%; among close-contact spouses of index case-patients, the SAR was 15.9%. The SAR varied by close contact age, from 3.0% for those <18 years of age to 12.5% for those >60 years of age. Multilevel logistic regression showed that factors significantly associated with increased SAR were living together, being a spouse, and being >60 years of age. Multilevel regression did not support SAR differing significantly by whether the most recent contact occurred before or after the index case-patient's onset of illness (p = 0.66). The relatively high SAR for coronavirus disease suggests relatively high virus transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Child , China/epidemiology , Humans , Incidence , Logistic Models
14.
Chinese Journal of Nosocomiology ; 30(24):3692-3696, 2020.
Article in English | GIM | ID: covidwho-1318607

ABSTRACT

OBJECTIVE: To introduce the measures to prevent and control the infection in a hospital in Qiqihaer. By formulating full-responsibility system and supervisor system of the hospital infection monitoring and management, it is not only optimize the management of the position of medical staff and reduce the exposure risk of all people in the hospital, but also provide references of prevention and control of Covid-19 for other medical institutions aiming to ensure the normalization and long-term effectiveness. METHODS: The epidemic prevention and control relevant systems, processes, measures, emergency plans for each department were formulated by combining the normative documents of the higher-level departments and the actual situation of our own institution. The hospital-responsibility system was established and improved based on the principle of different areas, contents, time periods and links, implement responsibility to everyone in each part, to form an effective supervision mechanism. RESULTS: All departments performed their duties and personnel responsibilities strictly, and established a reasonably and orderly work flows in the hospital during the COVID-19 epidemic. Besides, the ability of preventing and controlling the epidemic was improved continuously, which ensured normal medical activities that can be completed efficiently and orderly in the normalization of the epidemic. CONCLUSION: The scientific and effective hospital infection monitoring and management can not only enable the various departments to carry out daily work in an orderly manner, but also respond to the emergency situation of the epidemic. The most important thing is to implement the control work under the normalization of the epidemic.

16.
Neurobiol Dis ; 156: 105422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1267874

ABSTRACT

Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.


Subject(s)
Cerebellum/drug effects , Cerebral Cortex/drug effects , Glucocorticoids , Lung/drug effects , Pregnenediones/pharmacology , Prodrugs/pharmacology , Signal Transduction/drug effects , Animals , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Body Weight/drug effects , Brain/drug effects , Brain/growth & development , COVID-19/drug therapy , Dexamethasone/pharmacology , Female , Mice , Mice, Inbred C57BL , Myelin Basic Protein/biosynthesis , Organ Size/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/drug effects
18.
Ann Palliat Med ; 10(5): 5146-5155, 2021 May.
Article in English | MEDLINE | ID: covidwho-1200420

ABSTRACT

BACKGROUND: Reduning injection is a traditional Chinese medicine (TCM) with known efficacy against a variety of viral infections, but there is no data about its efficacy against coronavirus disease 2019 (COVID-19). METHODS: To explore the efficacy and safety of Reduning injection in the treatment of COVID-19, a randomized, open-labeled, multicenter, controlled trial was conducted from 12 general hospitals between 2020.02.06 and 2020.03.23. Patients with COVID-19 who met the diagnostic criteria of the "Diagnosis and Treatment Program for Novel Coronavirus Infection Pneumonia (Trial Fifth Edition)". Patients were randomized to routine treatment with or without Reduning injection (20 mL/day for 14 days) (ChiCTR2000029589). The primary endpoint was the rate of achieving clinical symptom recovery on day 14 of treatment. RESULTS: There were 77 and 80 participants in the Reduning and control groups. The symptom resolution rate at 14 days was higher in the Reduning injection than in controls [full-analysis set (FAS): 84.4% vs. 60.0%, P=0.0004]. Compared with controls, the Reduning group showed shorter median time to resolution of the clinical symptoms (143 vs. 313.5 h, P<0.001), shorter to nucleic acid test turning negative (146.5 vs. 255.5 h, P<0.001), shorter hospital stay (14.1 vs. 18.1 days, P<0.001), and shorter time to defervescence (29 vs. 71 h, P<0.001). There was no difference in AEs (3.9% vs. 8.8%, P=0.383). CONCLUSIONS: This preliminary trial suggests that Reduning injection might be effective and safe in patients with symptomatic COVID-19.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Drugs, Chinese Herbal/adverse effects , Humans , Medicine, Chinese Traditional , SARS-CoV-2 , Treatment Outcome
20.
Infect Dis Poverty ; 10(1): 48, 2021 Apr 12.
Article in English | MEDLINE | ID: covidwho-1181127

ABSTRACT

BACKGROUND: COVID-19 has posed an enormous threat to public health around the world. Some severe and critical cases have bad prognoses and high case fatality rates, unraveling risk factors for severe COVID-19 are of significance for predicting and preventing illness progression, and reducing case fatality rates. Our study focused on analyzing characteristics of COVID-19 cases and exploring risk factors for developing severe COVID-19. METHODS: The data for this study was disease surveillance data on symptomatic cases of COVID-19 reported from 30 provinces in China between January 19 and March 9, 2020, which included demographics, dates of symptom onset, clinical manifestations at the time of diagnosis, laboratory findings, radiographic findings, underlying disease history, and exposure history. We grouped mild and moderate cases together as non-severe cases and categorized severe and critical cases together as severe cases. We compared characteristics of severe cases and non-severe cases of COVID-19 and explored risk factors for severity. RESULTS: The total number of cases were 12 647 with age from less than 1 year old to 99 years old. The severe cases were 1662 (13.1%), the median age of severe cases was 57 years [Inter-quartile range(IQR): 46-68] and the median age of non-severe cases was 43 years (IQR: 32-54). The risk factors for severe COVID-19 were being male [adjusted odds ratio (aOR) = 1.3, 95% CI: 1.2-1.5]; fever (aOR = 2.3, 95% CI: 2.0-2.7), cough (aOR = 1.4, 95% CI: 1.2-1.6), fatigue (aOR = 1.3, 95% CI: 1.2-1.5), and chronic kidney disease (aOR = 2.5, 95% CI: 1.4-4.6), hypertension (aOR = 1.5, 95% CI: 1.2-1.8) and diabetes (aOR = 1.96, 95% CI: 1.6-2.4). With the increase of age, risk for the severity was gradually higher [20-39 years (aOR = 3.9, 95% CI: 1.8-8.4), 40-59 years (aOR = 7.6, 95% CI: 3.6-16.3), ≥ 60 years (aOR = 20.4, 95% CI: 9.5-43.7)], and longer time from symtem onset to diagnosis [3-5 days (aOR = 1.4, 95% CI: 1.2-1.7), 6-8 days (aOR = 1.8, 95% CI: 1.5-2.1), ≥ 9 days(aOR = 1.9, 95% CI: 1.6-2.3)]. CONCLUSIONS: Our study showed the risk factors for developing severe COVID-19 with large sample size, which included being male, older age, fever, cough, fatigue, delayed diagnosis, hypertension, diabetes, chronic kidney diasease, early case identification and prompt medical care. Based on these factors, the severity of COVID-19 cases can be predicted. So cases with these risk factors should be paid more attention to prevent severity.


Subject(s)
Age Factors , COVID-19/epidemiology , Comorbidity , Severity of Illness Index , Sex Factors , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , China/epidemiology , Early Diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL